scholarly journals PERENCANAAN PENGGUNAAN LAHAN MELALUI PENDEKATAN PREDIKSI EROSI DAN KLASIFIKASI KEMAMPUAN LAHAN DI DAERAH ALIRAN SUNGAI KOLOH PASIRAN LOMBOK TIMUR

Author(s):  
Sulastri Sulastri ◽  
I Wayan Sandi Adnyana ◽  
I Nyoman Merit

Erosion is a form of land degradation is very serious in Koloh Pasiran watershed. This condition perceived more severe by the fact that the understanding of the process of saving the natural resources of forest, soil and water have not received maximum attention. This is evidenced by the presence of illegal logging, forest fires around the area of the watershed during the dry season and flooding during every rainy season. Therefore, the research conducted with the aim to: 1) determine the level of erosion and soil and water conservation planning in the Koloh Pasiran watershed, 2) determine the land capability class in Koloh Pasiran watershed and 3) to plan land use capability classes based on erosion rate. Observations and sampling of soil samples for prediction of erosion, soil conservation and classification approach according, planning based on common land unit. This land unit maps obtained from the land use maps overlay by slope, soil and land use maps done by estimating the magnitude of the erosion equation USLE (Universal Soil Loss Equation) of Wischmeier and Smit (1978). Determine land capability class with land capability classification approach according Arsyad (1989). Land use planning and soil and water conservation in addition to using USLE equation also uses land capability classification according Arsyad (1989). The results show the level of erosion prediction calculation slight to very severe erosion. Mixture of garden soil with a 2% slope erosion rates relatively slight. Dry land with a slope of 2% classified as severe erosion and the shrub land with a slope of 2-3% erosion classified as severe to very severe. While in secondary forest land and primary forests with a slope of 2-25% relatively slight erosion. Land capability class in Koloh Pasiran watershed can be classified into class IV (3 units of land), class V (5 units of land), class VI (1 unit of land) and VIII (2 units of land). The limiting factors are: (e) the slopes are steep and severe erosion rate and (s) low water holding capacity. Direction of land use for high density mixed garden with bench terrace with good construction, dry with good bench terrace construction and given a booster plants around the lip of land, shrub land used for community forestry, agroporestry and natural forests, while for secondary forests and forest maintained primary sustainability

Author(s):  
I Wayan Suarsana ◽  
I Nyoman Merit ◽  
I Wayan Sandi Adnyana

Land resource damage caused by the land conversion and land use without regard to principles of conservation of soil and water. The damage resulted in the erosion is very high. Changes in land use without regard to principles of conservation of soil and water is currently happening in Baturiti District. Given this research can determine the level of erosion, soil and water conservation planning, land capability classification and proposed land use in Baturiti District. Erosion prediction using USLE (Universal Soil Loss Equation) to estimate the rate of erosion and also to get an idea the determination of soil and water conservation measures appropriate to the region. Determination of the land capability classification method Arsyad (1989) is by classifying land capability to classify land capability class based on the value of the limiting factor of land that is adjusted with land capability classification criteria. Determining of the proposed land use using the scoring method by combining the slope factor of the field, the soil sensitivity of the against erosion and the intensity of daily rainfall. Soil sampling is done by taking a total of 19 soil samples from a unit of land. The prediction results on each unit of land erosion in the area showed the level of erosion is very light covering an area of 11,70 ha, mild erosion area of 5.221,56 ha, erosion was an area of 88,10 ha, severe erosion area of 616.20 ha and very severe erosion area of 2.195,39 ha. Soil and water conservation measures required on land units with erosion prediction value exceeds the value erosion that can be tolerated so that the value could be below the value erosion erosion can be tolerated. Capability classification of the land in the study area consists of land capability class II with an area of 1489,39 ha, class III area of 827,39 ha, class IV with an area of 830.15 ha, class VI area of 1.373,79 ha, class VII covering 1.453,92 ha, class VIII covering an area of 2.176,31 ha. Tutorial use of land for the forest department is directed to the protected forest area covering an area of 2.458,00 ha. Tutorial use of land outside the forest area to protected area 1079.81 ha (13,27%), a buffer zone covering an area of 1.662,31 ha, annual crop cultivation area covering an area of 844.86 ha and seasonal crops cultivation area covering an area of 2.087,97 ha.


2020 ◽  
Vol 25 (1) ◽  
pp. 7
Author(s):  
Margareta Edo Dhoke ◽  
Ambar Kusumandari ◽  
Senawi Senawi

AbstrakKajian tingkat erosi dan rancangan Konservasi Tanah-Air (KTA) telah dilakukan di Sub DAS Waewoki DAS Aesesa Kabupaten Ngada Provinsi Nusa Tenggara Timur. Penelitian ini bertujuan untuk memprediksi tingkat erosi di Sub DAS Waewoki dan menentukan teknik KTA di Sub DAS Waewoki. Untuk memprediksi erosi, diterapkan model SWAT, dengan tahapan deliniasi DAS, pembentukan peta unit lahan, input data iklim serta data pendukung yang dibutuhkan, dan running SWAT. Dari 51 unit lahan di wilayah kajian diambil sampel tanah pada 13 titik lokasi berdasarkan GPS. Untuk merancang teknik KTA digunakan analisis klaster. Hasil penelitian menunjukkan bahwa tingkat erosi yang terjadi pada enam tahun terakhir sangat bervariasi, dari tingkat erosi sangat ringan sebesar 0,11 %, kelas ringan sebesar 1,38 % dan kelas sedang sebesar 1 %. Berdasarkan model regresi ditunjukkan bahwa faktor erosi yang paling berpengaruh di lokasi penelitian adalah kelerengan, yang signifikan terhadap kriteria probabilitas yaitu 0.05. Rancangan teknik KTA dirancang pada jarak tandan terkecil dengan jumlah kelompok klaster sebayak 5 yang memiliki klasifikasi unit lahan yang berbeda-beda. Pengklasteran unit lahan menunjukkan bahwa faktor kelerengan, penggunaan lahan dan jenis tanah merupakan faktor yang paling dominan untuk terbentuknya kelompok klaster I dan V, sedangkan untuk kelompok klaster II, III, dan IV faktor yang paling dominan adalah penggunaan lahan dan jenis tanah. Model KTA yang diterapkan pada setiap kelompok klaster adalah model vegetatif dan mekanik sesuai dengan klasifikasi yang terbentuk.AbstractThe study erosion level and Soil-Water Conservation (SWC) engineering plan was conducted in Waewoki Sub watershed, Aesesa Watershed, Ngada Regency, East Nusa Tenggara Province. This study was aimed at predicting the erosion level in Waewoki Sub watershed and determining Soil and Water Conservation engineering in Waewoki Sub watershed. To predict erosion, SWAT model was applied, with model analysis phases including watershed delineation, land unit map creation, climate data input and supporting data needed, and running SWAT. From the 51 units of land in the study area, the soil samples were collected at 13 locations using GPS. Cluster analysis was used to plan SWC engineering. The results showed that the erosion level occurred in the last six years varied widely, ranging from very mild erosion level of 0.11%, mild level of 1.38%, and medium level of 1%. The statistical test with regression model approach showed that the most influential factor of erosion in the study site was slope, which was significant to the probability criterion, i.e. 0.05. SWC engineering plan was planned in the smallest cluster distance by 5 cluster groups with different land unit classification. Land unit clustering showed that the factors of slope, land use and soil type were the most dominant factors for the formation of the cluster groups I and V, while the most dominant factors for cluster groups II, III, and IV were land use and soil type. The SWC models applied to each cluster group were vegetative and mechanical models, in accordance with the classification formed.


Author(s):  
Ni Made Ayu Ratna Sari ◽  
I Wayan Sandi Adnyana ◽  
I Nyoman Merit

Erosion in the watershed generally occurs due to land use that ignores the rules of soil and water conservation. There is much activity carried out by people living on land in the Yeh Leh watershed area, which makes the level of dependence is very enormous.The erosion forecast is using the USLE (Universal Soil Loss Equation) to estimate the erosion swift occurs and to obtain illustration in determining the precise soil and water measures in a region. The determination of land capability classification is using Arsyad’s method (1989) in which to classify the land ability by classifying the land ability class based on the value of land limiting factors, which then adjusted to the criteria of classification of land capability. The land use directional determination is applying the scoring method where combining field slope factor, soil sensitivity to erosion and daily rainfall intensity. The erosion level of the YehLeh watershed area is categorized as mild to very severe. A very light erosion level as large as 515 ha (21.01%), with the land use in the form of irrigated rice field and forest. The severe erosion level as large as 990.02 ha (40.40%) with land use in the form of plantations. The very heavy erosion level as large as 945.82 ha (38.59%) with land use in the form of plantations. The classification of land capability in the YehLeh watershed area consists of 5 classes of land abilities: class II of 115, 22 ha (4.70%), class III of 533.95 ha (21.79%), class IV of 423.61 (17.28%), Class VI of 1,102.03 ha (44.97%), and Class VII of 276.03 ha (11.26%), with some limiting factors for instance, soil texture, erosion and drainage. Proposed land use in the YehLeh watershed area use for forest areas is as protected forest of 456.49 ha (18.63%). Proposed land use outside of the forest area consist of 58.51 ha (2.39%) of seasonal crops, annual cultivation area of 990.02 ha (40.40%) and buffer area of 945.82 (38.59%). Keywords: watershed, erosion, land capability classification, proposed land use.


2013 ◽  
Vol 34 (3) ◽  
pp. 236-259 ◽  
Author(s):  
Gebeyehu Taye ◽  
Jean Poesen ◽  
Bas Van Wesemael ◽  
Matthias Vanmaercke ◽  
Daniel Teka ◽  
...  

Author(s):  
Karsun Karsun ◽  
I Nyoman Merit ◽  
I Wayan Suarna

Telagawaja Sub-Watershed is upper part watershed of Unda Watershed. As upper watershed, Telagawaja sub watershed has functions as conservation area, water catchment area, and managed in order to keep sub watershed environment not degradated. This research objectives are to identify the characteristics of the land, the function of the area, and the erosion potential rate (TBE), as well as land management recommendations on Telagawaja Sub-Watershed. The identification of land is conducted by analyzing the characteristics of thematic maps in study area. The directives of classification land function is determined by the Minister of Agriculture Number.837/Kpts/Um/ 11/1980 and Number: 683/Kpts/Um/8/1981. The prediction of actual erosion is calculated by USLE formula for the agriculture area, while non-agricultural land use is applied Snyder formula (1980) in Asdak (2010). Erosion class and erosion rate (TBE) are determined based on the Director General of Reforestation and Land Rehabilitation Department of Forestry Number.041/Kpts/V/1998. Determination for the amount of erosion is still can be allowed using the method of Thompson (1957) in Arsyad (2010) which based on soil properties attached to Telagawaja sub watershed. The research shows that Telagawaja Sub-Watershed characteristic is an area which is susceptible to erosion.The analysis shows that the direction of the area function Telagawaja sub-watershed consists of an area of 7337.28 Ha of protection forest (66.01%), and the function of a buffer area 3.778.31 Ha (33.99%). The result of the study on Telagawaja sub-watershed erosion is 2777.07 tonnes ha-1year-1. Erosion class and erosion rate of Telagawaja Sub-Watershed vary from very light to very severe. Erosion class and erosion rate (TBE) with category severe to very severe consist an area of 2.071,97 ha (18,64 %) from total sub-watershed area. Land use planning implemented by applying alternative measures of soil and water conservation can reduce the rate of erosion of 2777.07 tonnes ha-1year-1 to 611.00 tonnes ha-1year-1 or less 2166.07 tonnes ha- 1year-1.


2019 ◽  
Vol 87 ◽  
pp. 104051 ◽  
Author(s):  
Nathan S. Chesterman ◽  
Julia Entwistle ◽  
Matthew C. Chambers ◽  
Hsiao-Chin Liu ◽  
Arun Agrawal ◽  
...  

2007 ◽  
Vol 31 (4) ◽  
pp. 389-403 ◽  
Author(s):  
Liding Chen ◽  
Wei Wei ◽  
Bojie Fu ◽  
Yihe Lü

The Loess Plateau, China, has long been suffering from serious soil erosion. About 2000 years ago, larger areas were used for grain production and soil erosion was thus becoming severe with increase in human activity. Severe soil and water loss led to widespread land degradation. During the past decades, great efforts were made in vegetation restoration to reduce soil erosion. However, the efficiency of vegetation restoration was not as satisfactory as expected due to water shortage. China initiated another state-funded scheme, the `Grain-for-Green' project in 1999, on the Loess Plateau to reduce soil erosion and improve land quality. However, the control of soil erosion effectively by land-use modification raised problems. In this paper, the lessons and experiences regarding soil and water conservation in the Loess Plateau in the past decades are analysed first. Urgent problems are then elaborated, such as the contradiction between land resource and human population, shortage of water both in amount and tempospatial distribution for vegetation growth, weak awareness of the problems of soil conservation by local officials, and poor public participation in soil and water conservation. Finally, suggestions regarding soil and water conservation in the Loess Plateau are given. In order to control soil erosion and improve vegetation, a scientific and detailed land-use plan for the Loess Plateau has to be made, in the first instance, and then planning for wise use of water resources should be undertaken to control mass movement effectively and to improve land productivity. Methods of improving public awareness of environmental conservation and public involvement in vegetation rehabilitation are also important.


2019 ◽  
Vol 19 (1) ◽  
pp. 26-32
Author(s):  
Gilang Munggaran ◽  
Yayat Hidayat ◽  
Surya Darma Tarigan ◽  
Dwi Putro Tejo Baskoro

Cimanuk Watershed is a priority catchment in West Java Province. The objective of study is to analyze various land use scenarios to improve base flow and lateral flow. The analysis use SWAT Hydrology model. The study showed that model has a good performance in predicting flow discharge produced NSE 0.56 (satisfactorily) and R2 0.70. There are four scenarios to be analyzed. The best base flow and lateral flow analyses is from the first scenario with soil and water conservation techniques. The scenario resulted the river regime coefficient by 78 (moderat), reduce direct runoff by 40.76% and increase lateral by 536.95 mm. Keywords: Base flow, landuse, lateral flow, soil and water conservation techniques, SWAT model 


2014 ◽  
Vol 34 (23) ◽  
Author(s):  
刘金巍 LIU Jinwei ◽  
靳甜甜 JIN Tiantian ◽  
刘国华 LIU Guohua ◽  
李宗善 LI Zongshan ◽  
杨荣金 YANG Rongjin

Sign in / Sign up

Export Citation Format

Share Document