scholarly journals ANALYSIS OF LIMONENE AND OTHER ANTIOXIDANTS IN COMMERCIALESSENTIAL OIL PRODUCTS COMPARED TO HOMEMADE VIRGIN COCONUT OIL

Author(s):  
Ni Made Suaniti ◽  
I Wayan Bandem Adnyana ◽  
Manuntun Manurung ◽  
Oka Ratnayani ◽  
Raisyah Anjani

Essential oil production in the market is very diverse with various brands labeled as antioxidants that have gained more attention in the society recently. The purpose of this study was to analyze limonene and other antioxidants content of the essential oils in the market compared to homemade virgin coconut oil. The method used was Gas Chromatography-Mass Spectrometry (GC-MS) and Fourier-transform infrared (FTIR) Spectroscopy. The infrared spectrogram showed the presence of alkanes and esters respectively at wave numbers of 3000-2850 and 1750-1730 cm-1. Chromatogram results showed the presence of limonenecompounds and some antioxidants with a fairly good separation in the several types of oils, which was not detected in the homemade virgin coconut oil.  

2016 ◽  
Vol 1 (1) ◽  
pp. 29
Author(s):  
Handoko Darmokoesoemo ◽  
Suyanto Suyanto ◽  
Denny Ika Rahmawati

AbstrakPenelitian ini bertujuan untuk mentransformasi kitosan menjadi carboxymethyl chitosanyang selanjutnya diubah menjadi carboxymethyl chitosan urea glutarat (CMChi-UGLU) dan kemudian diaplikasikan sebagai katalis terfluidakan untuk sintesis biodiesel. Selain itu, penelitian ini juga bertujuan untuk menentukan aktivitas katalitik katalis CMChi-UGLU. CMChi-UGLU yang diperoleh dikarakterisasi dengan menggunakan Fourier Transform Infra Red(FTIR) sedangkan biodiesel yang diperoleh dikarakterisasi dengan menggunakan Gas Chromatography-Mass Spectrometry (GC-MS). Sintesis biodiesel dilakukan dengan menggunakan kolom fluidisasi yang diisi denganVirgin Coconut Oil dan metanol (1:60) serta katalis CMChi-UGLU sebanyak 10% b/b minyak selama 90 menit dan pada suhu 65-70°C. Hasil penelitian menunjukkan bahwa aktivitas katalitik katalis CMChi-UGLU adalah 80,046%, hasil ini lebih tinggi dibandingkan katalis chitosan yaitu 40,023%. Kata kunci: kitosan, CMChi-UGLU, fluidisasi, aktivitas katalitik  AbstractThis study aims to transforming chitosan into carboxymethyl chitosan which is converted into carboxymethyl chitosan urea glutaric acid (CMChi-UGLU) that will be used as a fluidized catalyst for synthesis biodiesel. In addition, this study aims to determining the catalytic activity of CMChi-UGLU. CMChi-UGLU is characterized by Fourier Transform Infra-Red(FTIR) while biodiesel is characterized by Gas Chromatography-Mass Spectrometry (GC-MS). Synthesis of biodiesel is performed using fluidization column which filled with virgin coconut oil and methanol (1:60) and also heterogeneous catalyst CMChi-UGLU as many as 10% of oil weight on condition within 90 minutes at temperature 65-70°C. The result of synthesis of biodiesel showed that the catalytic activity of CMChi-UGLU is 80,046%, this result is higher than uses chitosan which it’s catalytic activity is 40,023%. Keywords: chitosan, CMChi-UGLU, fluidization, catalytic activity


2009 ◽  
Vol 4 (11) ◽  
pp. 1934578X0900401 ◽  
Author(s):  
Amy Desautels ◽  
Kamal Biswas ◽  
Alexander Lane ◽  
Astrid Boeckelmann ◽  
Soheil S. Mahmoud

Linalool acetate, one of the major constituent of several essential oils, is heat-labile and decomposes upon exposure to the high injector temperature during gas chromatography. Here we report the development of an improved method for detection of this compound by gas chromatography mass spectrometry (GCMS) using cold on-column injection of the sample. By using this sensitive method, it has been demonstrated that a lavandin (L.x intermedia) mutant accumulates trace quantities of linalool acetate and camphor and higher amounts of cineole and borneol compared to its parent. This plant, which very likely carries a point mutation in one or more of the genes involved in essential oil production, provides a unique tool for investigating regulation of essential oil biogenesis in plants.


Author(s):  
Carla Maria Mariano Fernandez ◽  
◽  
Fabiana Brusco Lorenzetti ◽  
Sirlene Adriana Kleinubing ◽  
Joao Paulo Pinguello de Andrade ◽  
...  

The present study aimed to analyze the chemical composition of the essential oil from Garcinia gardneriana (Planchon & Triana) Zappi leaves and fruits, and to determine its acaricidal activity on Rhipicephalus microplus by larval packet test and larvicidal action on Aedes aegypti by larval immersion test. The chemical analysis of the essential oil by gas chromatography-mass spectrometry identified sesquiterpene hydrocarbons and oxygenated sesquiterpenes in bacupari leaves and fruits, and α-cedrene, α-chamigrene, α-trans-bergamotene, and β-curcumene as major compounds. Essential oil from leaves of G. gardneriana presented acaricidal activity on R. microplus (LC50 = 4.8 mg/mL; LC99 = 10.8 mg/mL) and larvicidal effect on A. aegypti (LC50 = 5.4 mg/mL; LC99 = 11.6 mg/mL), whereas essential oil from the fruits of G. gardneriana showed LC50 = 4.6 mg/mL and LC99 = 8.9 mg/mL against R. microplus and LC50 = 6.4 mg/mL and LC99 = 13.9 mg/mL against A. aegypti. These results thus demonstrate the potential acaricidal and larvicidal activity of essential oil of G. gardneriana, offering new perspectives for the realization of bioassays from this essential oil.


2014 ◽  
Vol 9 (2) ◽  
pp. 1934578X1400900
Author(s):  
Rajesh K. Joshi

The essential oil obtained from the aerial parts of Croton bonplandianus Baill. was analyzed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). A total of 37 compounds have been identified, representing 96.2% of the total oil. The main constituents were identified as β-caryophyllene (16.7%), germacrene D (14.7%), borneol (8.3%), Z-β-damascenone (6.(%), isobornyl acetate (6.2%), α-humulene (6.1%), germacrene A (5.2%) and caryophyllene oxide (4.5%). The oil was rich in sesquiterpene hydrocarbons (60.1%).


Sign in / Sign up

Export Citation Format

Share Document