scholarly journals Diagnosa Tumor Otak Berdasarkan Citra MRI (Magnetic Resonance Imaging)

2019 ◽  
Vol 18 (2) ◽  
Author(s):  
Ida Bagus Leo Mahadya Suta ◽  
Rukmi Sari Hartati ◽  
Yoga Divayana

Tumor otak menjadi salah satu penyakit yang paling mematikan, salah satu jenis yang paling banyak ditemukan adalah glioma sekitar 6 dari 100.000 pasien adalah penderita glioma. Citra digital melalui Magnetic Resonance Imaging (MRI) merupakan salah satu metode untuk membantu dokter dalam menganalisa dan mengklasifikasikan jenis tumor otak. Namun, klasifikasi secara manual membutuhkan waktu yang lama dan memiliki resiko kesalahan yang tinggi, untuk itu dibutuhkan suatu cara otomatis dan akurat dalam melakukan klasifikasi citra MRI. Convolutional Neural Network (CNN) menjadi salah satu solusi dalam melakukan klasifikasi otomatis dalam citra MRI. CNN merupakan algoritma deep learning yang memiliki kemampuan untuk belajar sendiri dari kasus kasus sebelumnya. Dan dari penelitian yang telah dilakukan, diperoleh hasil bahwa CNN mampu dalam menyelesaikan klasifikasi tumor otak dengan akurasi yang tinggi. Peningkatan akurasi diperoleh dengan mengembangkan algoritma CNN baik melalui menentukan nilai kernel dan/atau fungsi aktivasi.

Author(s):  
Ankita Kadam

Abstract: A Brain tumor is one aggressive disease. An estimated more than 84,000 people will receive a primary brain tumor diagnosis in 2021 and an estimated 18,600 people will die from a malignant brain tumor (brain cancer) in 2021.[8] The best technique to detect brain tumors is by using Magnetic Resonance Imaging (MRI). More than any other cancer, brain tumors can have lasting and life-altering physical, cognitive, and psychological impacts on a patient’s life and hence faster diagnosis and best treatment plan should be devised to improve the life expectancy and well-being of these patients. Neural networks have shown colossal accuracy in image classification and segmentation problems. In this paper, we propose comparative studies of various deep learning models based on different types of Neural Networks(ANN, CNN, TL) to firstly identify brain tumors and then classify them into Benign Tumor, Malignant Tumor or Pituitary Tumor. The data set used holds 3190 images on T1-weighted contrast-enhanced images which were cleaned and augmented. The best ANN model concluded with an accuracy of 78% and the best CNN model consisting of 3 convolution layers had an accuracy of 90%. The VGG16(retrained on the dataset) model surpasses other ANN, CNN, TL models for multi-class tumor classification. This proposed network achieves significantly better performance with a validation accuracy of 94% and an F1-Score of 91. Keywords: Artificial Neural Network(ANN), Convolution Neural Network (CNN), Transfer Learning(TL), Magnetic Resonance Imaging(MRI.)


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Qiaoliang Li ◽  
Yuzhen Xu ◽  
Zhewei Chen ◽  
Dexiang Liu ◽  
Shi-Ting Feng ◽  
...  

Objectives. To evaluate the application of a deep learning architecture, based on the convolutional neural network (CNN) technique, to perform automatic tumor segmentation of magnetic resonance imaging (MRI) for nasopharyngeal carcinoma (NPC). Materials and Methods. In this prospective study, 87 MRI containing tumor regions were acquired from newly diagnosed NPC patients. These 87 MRI were augmented to >60,000 images. The proposed CNN network is composed of two phases: feature representation and scores map reconstruction. We designed a stepwise scheme to train our CNN network. To evaluate the performance of our method, we used case-by-case leave-one-out cross-validation (LOOCV). The ground truth of tumor contouring was acquired by the consensus of two experienced radiologists. Results. The mean values of dice similarity coefficient, percent match, and their corresponding ratio with our method were 0.89±0.05, 0.90±0.04, and 0.84±0.06, respectively, all of which were better than reported values in the similar studies. Conclusions. We successfully established a segmentation method for NPC based on deep learning in contrast-enhanced magnetic resonance imaging. Further clinical trials with dedicated algorithms are warranted.


Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1199
Author(s):  
Michelle Bardis ◽  
Roozbeh Houshyar ◽  
Chanon Chantaduly ◽  
Alexander Ushinsky ◽  
Justin Glavis-Bloom ◽  
...  

(1) Background: The effectiveness of deep learning artificial intelligence depends on data availability, often requiring large volumes of data to effectively train an algorithm. However, few studies have explored the minimum number of images needed for optimal algorithmic performance. (2) Methods: This institutional review board (IRB)-approved retrospective review included patients who received prostate magnetic resonance imaging (MRI) between September 2014 and August 2018 and a magnetic resonance imaging (MRI) fusion transrectal biopsy. T2-weighted images were manually segmented by a board-certified abdominal radiologist. Segmented images were trained on a deep learning network with the following case numbers: 8, 16, 24, 32, 40, 80, 120, 160, 200, 240, 280, and 320. (3) Results: Our deep learning network’s performance was assessed with a Dice score, which measures overlap between the radiologist’s segmentations and deep learning-generated segmentations and ranges from 0 (no overlap) to 1 (perfect overlap). Our algorithm’s Dice score started at 0.424 with 8 cases and improved to 0.858 with 160 cases. After 160 cases, the Dice increased to 0.867 with 320 cases. (4) Conclusions: Our deep learning network for prostate segmentation produced the highest overall Dice score with 320 training cases. Performance improved notably from training sizes of 8 to 120, then plateaued with minimal improvement at training case size above 160. Other studies utilizing comparable network architectures may have similar plateaus, suggesting suitable results may be obtainable with small datasets.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Yi Bo ◽  
Junli Xie ◽  
Jianguo Zhou ◽  
Shikun Li ◽  
Yuezhan Zhang ◽  
...  

The clinical application of the artificial intelligence-assisted system in imaging was investigated by analyzing the magnetic resonance imaging (MRI) influence characteristics of cerebral infarction in critically ill patients based on the convolutional neural network (CNN). Fifty patients with cerebral infarction were enrolled and examined by MRI. Besides, a CNN artificial intelligence system was established for learning and training. The features were extracted from the MRI image results of the patients, and then, the data were calculated by computer technology. The gray-level cooccurrence matrix (GLCM) of T1-weighted images was 0.872 ± 0.069; the reasonable prediction (ALL) result was 0.766 ± 0.112; the gray-level run-length matrix (GLRLM) was 0.812 ± 0.101; the multigray-level area size matrix (MGLSZM) result was 0.713 ± 0.104; and the result of gray-scale area size matrix (GLSZM) was 0.598 ± 0.099. The GLCM, ALL, GLRLM, MGLSZM, and GLSZM of enhanced T1-weighted images were 0.710 ± 0.169, 0.742 ± 0.099, 0.778 ± 0.096, 0.801 ± 0.104, and 0.598 ± 0.099, respectively. The GLCM, ALL, GLRLM, MGLSZM, and GLSZM of T2-weighted images were 0.780 ± 0.096, 0.798 ± 0.087, 0.888 ± 0.086, 0.768 ± 0.112, and 0.767 ± 0.100, respectively. In short, the image diagnosis method that could reduce the subjective visual judgment error to a certain extent was found by analyzing the characteristics of MRI images of critically ill patients with cerebral infarction based on CNN.


Sign in / Sign up

Export Citation Format

Share Document