Transforming Growth Factor Beta (TGF-β) Gene Family Members in Developing and Neoplastic Odontogenic Tissues

2006 ◽  
Vol 15 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Kristiina Heikinheimo ◽  
Kazuhisa Mori ◽  
Hitoshi Nagatsuka ◽  
Risto-Pekka Happonen
1997 ◽  
Vol 272 (4) ◽  
pp. G713-G720 ◽  
Author(s):  
J. Y. Wang ◽  
M. J. Viar ◽  
J. Li ◽  
H. J. Shi ◽  
S. A. McCormack ◽  
...  

The current study tests the hypothesis that intracellular polyamines are involved in the regulation of gene expression of transforming growth factor-beta (TGF-beta) during epithelial cell migration after wounding. Administration of alpha-difluoromethylornithine (DFMO), a specific inhibitor of ornithine decarboxylase (the first rate-limiting enzyme for polyamine synthesis), depleted cellular polyamines putrescine, spermidine, and spermine in IEC-6 cells. DFMO also significantly reduced basal levels of TGF-beta mRNA in unwounded cells. Gene expression of TGF-beta was dramatically stimulated after wounding of a monolayer of cells not treated with DFMO. TGF-beta mRNA levels significantly increased from 4 to 12 h after wounding, peaking at 6 h at a level eight times the prewounding control. Increased levels of TGF-beta mRNA in IEC-6 cells after wounding were paralleled by an increase in TGF-beta content. Depletion of intracellular polyamines in DFMO-treated cells significantly inhibited increased expression of the TGF-beta gene in response to wounding. Cell migration also significantly decreased in DFMO-treated cells. In the presence of DFMO, exogenous TGF-beta restored cell migration to normal. These results indicate that 1) polyamine depletion induced by DFMO is associated with decreases in the expression of the TGF-beta gene and cell migration in IEC-6 cells and 2) exogenous TGF-beta reverses the inhibitory effect of polyamine depletion on cell migration. These findings suggest that polyamines are required for epithelial cell migration in association with their ability to regulate TGF-beta gene expression.


1990 ◽  
Vol 265 (2) ◽  
pp. 1089-1093 ◽  
Author(s):  
P Kondaiah ◽  
M J Sands ◽  
J M Smith ◽  
A Fields ◽  
A B Roberts ◽  
...  

1991 ◽  
Vol 266 (34) ◽  
pp. 23282-23287
Author(s):  
J.L. Andres ◽  
L. Rönnstrand ◽  
S. Cheifetz ◽  
J. Massagué

1988 ◽  
Vol 8 (5) ◽  
pp. 2229-2232 ◽  
Author(s):  
A M Brunner ◽  
L E Gentry ◽  
J A Cooper ◽  
A F Purchio

Analyses of cDNA clones coding for simian type 1 transforming growth factor beta (TGF-beta 1) suggest that there are three potential sites for N-linked glycosylation located in the amino terminus of the precursor region. Analysis of [3H]glucosamine-labeled serum-free supernatants from a line of Chinese hamster ovary cells which secrete high levels of recombinant TGF-beta 1 indicate that the TGF-beta 1 precursor, but not the mature form, is glycosylated. Digestion with neuraminidase resulted in a shift in migration of the two TGF-beta 1 precursor bands, which suggests that they contain sialic acid residues. Endoglycosidase H had no noticeable effect. Treatment with N-glycanase produced two faster-migrating sharp bands, the largest of which had a molecular weight of 39 kilodaltons. TGF-beta 1-specific transcripts produced by SP6 polymerase programmed the synthesis of a 42-kilodalton polypeptide which, we suggest, is the unmodified protein backbone of the precursor. Labeling with 32Pi showed that the TGF-beta 1 precursor was phosphorylated in the amino portion of the molecule.


1991 ◽  
Vol 173 (3) ◽  
pp. 589-597 ◽  
Author(s):  
G Poli ◽  
A L Kinter ◽  
J S Justement ◽  
P Bressler ◽  
J H Kehrl ◽  
...  

The pleiotropic immunoregulatory cytokine transforming growth factor beta (TGF-beta) potently suppresses production of the human immunodeficiency virus (HIV), the causative agent of the acquired immunodeficiency syndrome, in the chronically infected promonocytic cell line U1. TGF-beta significantly (50-90%) inhibited HIV reverse transcriptase production and synthesis of viral proteins in U1 cells stimulated with phorbol myristate acetate (PMA) or interleukin 6 (IL-6). Furthermore, TGF-beta suppressed PMA induction of HIV transcription in U1 cells. In contrast, TGF-beta did not significantly affect the expression of HIV induced by tumor necrosis factor alpha (TNF-alpha). These suppressive effects were not mediated via the induction of interferon alpha (IFN-alpha). TGF-beta also suppressed HIV replication in primary monocyte-derived macrophages infected in vitro, both in the absence of exogenous cytokines and in IL-6-stimulated cultures. In contrast, no significant effects of TGF-beta were observed in either a chronically infected T cell line (ACH-2) or in primary T cell blasts infected in vitro. Therefore, TGF-beta may play a potentially important role as a negative regulator of HIV expression in infected monocytes or tissue macrophages in infected individuals.


1991 ◽  
Vol 11 (10) ◽  
pp. 4952-4958
Author(s):  
A Zentella ◽  
F M Weis ◽  
D A Ralph ◽  
M Laiho ◽  
J Massagué

The growth-suppressive function of the retinoblastoma susceptibility gene product, RB, has been implicated in the mediation of growth inhibition and negative regulation of certain proliferation related genes by transforming growth factor-beta 1 (TGF-beta 1). Early gene responses to TGF-beta 1 were examined in order to determine their dependence on the cell cycle and on the growth-suppressive function of RB. TGF-beta 1, which rapidly elevates the steady-state level of junB and PAI-1 mRNAs and decreases that of c-myc mRNA, induces these responses in S-phase populations of Mv1Lu lung epithelial cells containing RB in a phosphorylated state. Since in this state RB is presumed to lack growth-suppressive activity, the response to TGF-beta 1 was also examined in DU145 human prostate carcinoma cells whose mutant RB product lacks growth-suppressive function. In these cells, TGF-beta 1 also decreases c-myc expression at the transcription initiation level. These results suggests that the c-myc, junB, and PAI-1 responses to TGF-beta 1 are not restricted to the G1 phase of the cell cycle and that down-regulation of c-myc expression by TGF-beta 1 can occur through a mechanism independent from the growth-suppressive function of RB.


1988 ◽  
Vol 91 (2) ◽  
pp. 313-318
Author(s):  
T. Lombardi ◽  
R. Montesano ◽  
M.B. Furie ◽  
S.C. Silverstein ◽  
L. Orci

Cultured endothelial cells isolated from fenestrated capillaries express many properties characteristic of their in vivo differentiated phenotype, including the formation of a limited number of fenestrae. In this study, we have investigated whether physiological factors that control cell differentiation might regulate the surface density of fenestrae in capillary endothelial cells. We have found that treatment of the cultures with retinoic acid (10 microM) induces a more than threefold increase in the surface density of endothelial fenestrae, whereas transforming growth factor beta (TGF beta) (2 ng ml-1) causes a sevenfold decrease in the surface density of these structures. These results show that the expression of endothelial fenestrae is susceptible to bidirectional modulation by physiological signals, and suggest that retinoids and TGF beta may participate in the regulation of fenestral density of capillary endothelium in vivo.


1991 ◽  
Vol 11 (10) ◽  
pp. 5338-5345
Author(s):  
B Kallin ◽  
R de Martin ◽  
T Etzold ◽  
V Sorrentino ◽  
L Philipson

By cDNA cloning and differential screening, five genes that are regulated by transforming growth factor beta (TGF beta) in mink lung epithelial cells were identified. A novel membrane protein gene, TI 1, was identified which was downregulated by TGF beta and serum in quiescent cells. In actively growing cells, the TI 1 gene is rapidly and transiently induced by TGF beta, and it is overexpressed in the presence of protein synthesis inhibitors. It appears to be related to a family of transmembrane glycoproteins that are expressed on lymphocytes and tumor cells. The four other genes were all induced by TGF beta and correspond to the genes of collagen alpha type I, fibronectin, plasminogen activator inhibitor 1, and the monocyte chemotactic cell-activating factor (JE gene) previously shown to be TGF beta regulated.


Sign in / Sign up

Export Citation Format

Share Document