scholarly journals Rancang Bangun Sistem Pembangkit Listrik Tenaga Air Menggunakan Konsep Hydrocat

Author(s):  
Syaiful Anwar ◽  
Muhamad Taufiq Tamam ◽  
Itmi Hidayat Kurniawan

Seiring perkembangan jaman, saat ini energi listrik telah menjadi salah satu kebutuhan primer dalam kehidupan sehari-hari, baik untuk melakukan pekerjaan ataupun kegiatan yang lainnya. Pembangkit Listrik Tenaga Air atau PLTA dengan menggunakan konsep hydrocat merupakan sebuah konsep pembangkit listrik yang diciptakan untuk aliran jalur irigasi yang memiliki ukuran tidak terlalu besar dan tingkat kedalamannya yang rendah. Oleh karena itu dibuatlah rancang bangun sistem pembangkit listrik menggunakan konsep hydrocat. Pada penelitian ini menggunakan generator DC sebagai sumber tenaga listrik dan menggunakan jenis turbin undershot. Penelitian ini dilakukan di Desa Karang Cegak Kecamatan Kutasari Kabupaten Purbalingga. Beban pada penelitian ini menggunakan lampu LED SMD 1,2 Watt, 2,4 Watt 3,6 Watt, dan 4,8 Watt. Alat ini mampu menghasilkan putaran pulley turbin air sebesar 69,2 rpm, 60,8 rpm, 59,0 rpm, 58,7 rpm, 57,1 rpm, dan 56,7 rpm. Putaran pulley generator DC sebesar 595,9 rpm, 586,1 rpm, 520,1 rpm, 506,2 rpm, dan 496,0 rpm. Besar tegangan yang dihasilkan 31,86 Volt, 9,20 Volt, 8,61 Volt, 8,38 Volt, dan 8,25 Volt. Besar arus yang dihasilkan sebesar 0,02 Ampere, dan besar daya yang dihasilkan sebesar 0,1836 Watt, 0,1718 Watt, 0,1671 Watt, dan 0,165 Watt.Along with the development of the times, nowadays electrical energy has become one of the primary needs in everyday life, both for doing work or other activities. Hydroelectric Power or Hydroelectric Power using the hydrocat concept is a power generation concept created for irrigation channel flow that is not too large and has a low depth level. Therefore, a power plant system design using the hydrocat concept was made. In this study using a DC generator as a source of electricity and using a type of undershot turbine. This research was conducted in Karang Cegak Village, Kutasari District, Purbalingga Regency. The load in this study uses 1.2 Watt SMD LED lamps, 2.4 Watt 3.6 Watt, and 4.8 Watt. This tool is capable of producing water turbine pulley rotation of 69.2 rpm, 60.8 rpm, 59.0 rpm, 58.7 rpm, 57.1 rpm, and 56.7 rpm. DC generator pulley rotation of 595.9 rpm, 586.1 rpm, 520.1 rpm, 506.2 rpm, and 496.0 rpm. The resulting voltages are 31.86 Volts, 9.20 Volts, 8.61 Volts, 8.38 Volts, and 8.25 Volts. The amount of current generated is 0.02 Ampere, and the amount of power generated is 0.1836 Watt, 0.1718 Watt, 0.1671 Watt, and 0.165 Watt.

Author(s):  
Bima Sakti ◽  
Nur Rani Alham ◽  
Ahmad Nur Fajri ◽  
Ilham Rizal Ma’rif

<em>The need for electricity in Indonesia is very important considering the limited resources and the lack of manpower, making Indonesia desperately need to increase electricity generation. One source of energy that can be converted into electrical energy is tidal barrage using the tidal barrage method. The application of this energy is still very small in Indonesia but there are a number of areas that have the potential to be implemented by the power plant. Tidal power plants that utilize the potential energy contained in the differences in tides and tides of sea water by trapping water in dams and then moving water turbines and when the water turbine is connected to a generator can produce electrical energy. Related to how the output of the generated power can it is known by looking at what height the water level drives the turbine. This type of power plant is environmentally friendly because it does not damage the natural ecosystem and the dam can be used for various activities.</em><em></em>


2021 ◽  
Vol 66 (1) ◽  
pp. 45-56
Author(s):  
Elisabeta Spunei ◽  
Ionel Turcu ◽  
Alina-Dana Vișan

The paper presents a laboratory micro hydroelectric power plant destined to applicative activities. The hydraulic turbine is a Pelton turbine, rebuilt by fast prototyping in Geomagic Design X and printed on a 3 D printer. The turbine casing and the afferent elements are made in-house. The hydrogenator is synchronous being an alternator from a Dacia vehicle. The hydrogenerator load is constituted by 3 groups of light bulbs. We analysed the working of the micro-hydroelectric power plant in idle run and for different loads. As a result of the analysis we found out that it stably works for different loads and by its open construction it is useful for developing students’ ability to understand the phenomena. The installation designed and executed is useful for the engineering students as the pandemic forbids the thematical visits in hydro-energetic facilities.


Author(s):  
Ottentri Ottentri ◽  
Hendi Matalata

The need for electrical energy is a necessity that can not be ditawar–tawar anymore for a life worthy of every person in this day. Generally, remote rural areas located in mountainous areas have a large potential of water energy, so that the hydroelectric power plant is one of the energy sources that can be developed. Jambi is an area covered with Batanghari River flows. This research aims to know how the work process of Microhydro power plant.  Components of the essential components of miniature microhydro power plants are reservoirs, rapid pipes, turbines, generators where these components are not loose bias, interrelated to one another. Round of Tubin obtained from the experiment is 400 rpm with water discharge 0.0016 m3/s. The maximum voltage generated by the generator is 18 volts. Voltage generated from the generator to charging the Batrai used inverter of 13.1 volts. The load will remain on even though the main energy source is the generator stop in the same, because the energy of the second is Batrai.


ELKHA ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Yunando Yunando ◽  
Sutriyatna Sutriyatna

Abstract– Temajuk Village is one of the villages in Kecamatan Paloh Sambas regency, West Kalimantan Province, which borders directly with Sarawak (Malaysia). From 1980 to 2011 Desa Temajuk has no permanent electricity yet. In 2011, the village will have electrical energy by utilizing local energy such as Micro Hydro Power Generation, by 2012, Centralized Solar Power Generation and by 2015 Diesel Power Plant, all of which will carry each load without being integrated with the same network . So it is necessary to do the study of merging a network that is connected to one another to be able to bear the same load.Microgrid System study was then created with the aim of producing a sustainable distribution network study by combining 3 different types of plants and operational savings from the use of diesel fuel oil costs as the main power plant after the network system. Keywords- Microgrid System, cost savings


2020 ◽  
Vol 7 (3) ◽  
pp. 21-26
Author(s):  
Mohammad Noor Hidayat ◽  
Ahmad Hermawan ◽  
Afriana Viro Fadilla ◽  
Muhammad Aden Herry Prakoso ◽  
Nurhayati

Electrical energy is a very important part of human activity at this time. At present a very popular source of renewable electricity is energy (solar) through the use of solar power generation system. "Design Passive Photovoltaic 50 Wp in Renewable Energy Laboratory State Polytechnic of Malang" aims to plan and analyze the solar power generation system (PLTS), namely a capacity of 50 wp,so that it can be used as a guideline when going to design or implement PLTS on a larger scale. Based on the analysis and testing carried out, namely testing of 50 Wp passive solar panels under normal (clean) angles of 0º, 15º, 30º and shading angles of 0º, as well as the fouling angle of 0º produces the highest energy of 210.7 Wh when the condition of the solar panels is at an angle of normal 30º.


JURNAL ELTEK ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 25
Author(s):  
Herman Hariyadi ◽  
Leonardo Kamajaya ◽  
Fitri Fitri ◽  
Mohammad Hafidh Fadli

ABSTRAKPertumbuhan dan konsumsi listrik yang tidak berimbang serta tingkat polusi yang terus meningkat, mendorong banyak penelitian tentang pembangkit listrik energi baru dan terbarukan. Salah satu energi terbarukan yang menghasilkan energi listrik adalah pembangkit listrik tenaga bayu. Turbin angin jenis savonius merupakan turbin yang sesuai dioperasikan dengan kecepatan angin yang relatif rendah dan cocok digunakan sebagai pembangkit listrik berskala kecil. Pada penelitian ini penulis juga mengkaji konfigurasi variasi kemiringan sudu bilah savonius tipe u overlap dan tipe u non-overlap. Agar mengetahui spesifikasi teknik pembangkit listrik tenaga bayu ini, penulis merancang prototype pembangkit listrik tenaga bayu turbin savonius dengan variasi kecepatan angin 0-8 m/s, variasi kemiringan sudu turbin sebesar 00, 150 dan 300. Berdasarkan percobaan yang telah dilakukan turbin dengan kemiringan sudu 150 pada bilah savonius non overlap menghasilkan tegangan dan RPM paling tinggi. Rata-rata tegangan yang dihasilkan pada kemiringan sudu tersebut adalah 3,61V pada 1081 RPM, dan arus keluaran mencapai 950mA dengan beban resistor 10Ω. Data logger digunakan untuk menyimpan data berbagai sensor tersebut kemudian di plot dalam bentuk grafik dengan komunikasi serial ke PC untuk selanjutnya dianalisa. ABSTRACTThe growth and disproportionate consumption of electricity as well as the level of pollution continues to increase, prompting a lot of research on new and renewable energy power generation. One of the renewable energies that produces electrical energy is wind power generation. The savonius type wind turbine is a turbine that is suitable for operation with relatively low wind speeds and is suitable for use as small-scale power plants. In this study, the author also examines the configuration of the savonius blade slope variations, type u overlap and type u non-overlap. In order to know the technical specifications of this wind power plant, the author designed a prototype of the Savonius turbine wind power plant with wind speed variations of 0-8 m/s, turbine blade slope variations of 00, 150 and 300. Based on experiments that have been carried out turbines with blade slopes 150 on non-overlap savonius blades produces the highest voltage and RPM. The average voltage produced on the slope of the blade is 3.61V at 1081 RPM, and the output current reaches 950mA with a load resistor of 10Ω. The data logger is used to store data on various sensors and then plotted in the form of a graph with serial communication to a PC for further analysis.


2020 ◽  
Vol 188 ◽  
pp. 00006
Author(s):  
Eko Yohanes Setyawan ◽  
Yusuf Ismail Nakhoda ◽  
Awan Uji Krismanto ◽  
Lalu Mustiadi ◽  
Erkata Yandri ◽  
...  

Pico hydro or a small scale hydroelectric power plant is used as the rotating energy of the generator. Pico hydro is a hydroelectric power plant that has a power of less than 5 kW. Technically, Pico hydro has three main components namely water, turbine and generator. Turbine type propeller reaction has a special profile that causes a decrease in water pressure during the blades. This pressure difference exerts force on the blade so that the runner (rotating part of the turbine) can rotate. Permanent magnets are used to produce magnetic flux. Permanent magnets used are rare-eatrhrod magnet material, neodymium-iron-boron NdFeB with N35 type. The planned generator released is 36.85 V, 500 rpm, 50 hz. This designed water turbine has four blades which cannot change its angle. As for the measurement results produce a voltage of 35.1 V with a manufacturing efficiency of 95 %. Charging the battery voltage must be more than 12 V, therefore the generator must be turned at least 200 rpm with a voltage of 14 V to be used for charging batteries.


Author(s):  
Welly Yandi ◽  
Wahri Sunanda ◽  
Nada Fitsa Alfazumi

The Waste Power Plant is one of the power plants with a new renewable energy concept that utilizes waste as fuel. The processing of waste into electrical energy is carried out in two ways: the thermal conversion process and the biological conversion process to find the potential for waste that can be used as fuel to generate electricity. The analysis is needed, especially for Pangkalpinang, which currently has a lot of unprocessed waste. This research was conducted through calculations using several formulas that have been used in previous studies. From these results, the potential waste in 2015 is 97.25 tons/day and produces energy of 18548.10 MWh/year, and in 2020, it was about 186.57 tons/day and produced energy of 35547.18 MWh/year. The projection calculations are carried out to determine the potential for 2021 to 2030. Waste as much as 182523 tons/day in2021 can produce energy of as much as 34776.11 MWh/year. And in 2030, the amount of waste as much as 218132 tons/day can generate an energy potential of 41560.69 MWh/year.


2019 ◽  
Vol 1 (1) ◽  
pp. 22-29
Author(s):  
Syamsul Amien ◽  
Yohanna Zelin ◽  
Fahmi Fahmi

Hydroelectric Power Plant is a generator that uses water as a prime mover to rotate the water turbine in generating electrical energy which will then be used for industrial activity. A problem in the process of generating electrical energy is how to maximize the available water resources for optimal power generation. In this study, we will discuss the relationship of water availability with power generation performance at PLTA PT Inalum by using Water Balance method. Water Balance method is a method used to find out how much water discharge that will be issued to a dam so that output water later can be utilized to optimally generate power. From our study we found that the obtained power was generated at peak load of 560.19 MW and therefore the discharge of water issued at the dam is equal to 134.05 tons / sec. We obtained a different trend pattern every year, where in 2015 trend pattern rises, in the year 2016 there is a trend pattern that is relatively constant and in the year 2017 a pattern of downward trend occured.


Sign in / Sign up

Export Citation Format

Share Document