scholarly journals UPWARD FLOW AND HEAT TRANSFER AROUND TWO HEATED CIRCULAR CYLINDERS IN SQUARE DUCT UNDER AIDING THERMAL BUOYANCY

2020 ◽  
Vol 14 (1) ◽  
pp. 113-123
Author(s):  
H. Laidoudi

This paper presents a numerical investigation of mixed convection heat transfer around a pair of identical circular cylinders placed in side-by-side arrangement inside a square cavity of single inlet and outlet ports. The investigation provided the analysis of gradual effect of aiding thermal buoyancy on upward flow around cylinders and its effect on heat transfer rate. For that purpose, the governing equations involving continuity, momentum and energy are solved using the commercial code ANSYS-CFX. The distance between cylinders is fixed with half-length of cavity. The simulation is assumed to be in laminar, steady, incompressible flow within range of following conditions: Re = 1 to 40, Ri = 0 to 1 at Pr = 0.71. The main obtained results are shown in the form of streamline and isotherm contours in order to interpret the physical phenomena of flow and heat transfer. The average Nusselt number is also computed and presented. It was found that increase in Reynolds number and/or Richardson number increases the heat transfer. Also, aiding thermal buoyancy creates new form of counter-rotating zones between cylinders.

2019 ◽  
Vol 54 (1) ◽  
pp. 83-88
Author(s):  
H Laidoudi ◽  
M Bouzit

This paper performs the effects of thermal buoyancy and the triangular arrangement of circular cylinders on fluid flow and heat transfer within a horizontal channel, the governing equations involving continuity; momentum and energy are solved in two-dimensional, laminar and steady flow regime. The average Nusselt number and drag coefficient are computed for the range of these conditions: Ri = 0 to 2 at fixed value of Pr = 1, Reynolds number Re = 30 and geometrical configurations (blockage ratio of β = 0.1). In order to observe the flow structure and temperature field under the gradual effect of thermal buoyancy, the streamlines and isotherm contours are illustrated. It is found that, a gradual increase in the value of buoyancy strength creates an asymmetrical flow around the cylinders. Interesting variations of drag coefficient and average Nusselt number are plotted with respect to Richardson number for each cylinder. Bangladesh J. Sci. Ind. Res.54(1), 83-88, 2019


2018 ◽  
Vol 16 ◽  
pp. 12-20
Author(s):  
Houssem Laidoudi ◽  
Oluwole Daniel Makinde

In this paper, we numerically examine the mixed convective flow around a confined tandem heated circular cylinders embedded in a vertical channel in order to determine exactly the effects of opposing thermal buoyancy and distance between cylinders (S) on the behavior of fluid flow and heat transfer rate. The dimensionless governing equations involving momentum, continuity and energy are obtained and solved in a steady laminar flow regime for the conditions:Re= 5 to 40 andS= 0 to 5d, at fixed values of Prandtl numberPr= 1, Richardson numberRi= 1 and blockage ratioβ= 1/5. The fluid flow and temperature field are illustrated in terms of streamline and isotherm contours. The average Nusselt number is also computed to quantify the effect of fluid flow and heat transfer characteristics on amount of heat transfer rate.


2018 ◽  
Vol 389 ◽  
pp. 164-175
Author(s):  
Houssem Laidoudi ◽  
Bilal Blissag ◽  
Mohamed Bouzit

In this paper, the numerical simulations of laminar mixed convection heat transfer from row of three isothermal square cylinders placed in side-by-side arrangement are carried out to understand the behavior of fluid flow around those cylinders under gradual effect of thermal buoyancy and its effect on the evacuation of heat energy. The numerical results are presented and discussed for the range of these conditions: Re = 10 to 40, Ri = 0 to 2 at fixed value of Prandtl number of Pr = 1 and at fixed geometrical configuration. In order to analyze the effect of thermal buoyancy on fluid flow and heat transfer characteristics the main results are illustrated in terms of streamline and isotherm contours. The total drag coefficient as well as average Nusselt number of each cylinder are also computed to determine exactly the effect of buoyancy strength on hydrodynamic force and heat transfer evacuation of each cylinder.


2018 ◽  
Vol 16 ◽  
pp. 1-11
Author(s):  
Houssem Laidoudi

2D simulation is carried out to determine exactly the effect of blockage ratio on the flow and mixed convection heat transfer characteristics of Newtonian fluid across a square cylinder confined in horizontal channel, the numerical study is investigated in the range of these conditions:Re= 10 to 30,Ri= 0 to 1 and blockage ratioβ= 1/10 to 1/2. The flow structure and temperature field are visualized in terms of streamlines and isotherm contours. The total drag coefficient and average Nusselt number are also reported to show the combined effects of thermal buoyancy, Reynolds number and blockage ratio on the hydrodynamic flow forces and heat transfer rate. The obtained results showed that the effect of thermal buoyancy on fluid flow and heat transfer becomes more pronounced by decreasing the blockage ratio.


Author(s):  
Houssem Laidoudi

This paper studied the natural convection heat transfer from two equal-sized cylinders of triangular cross-section confined in triangular enclosure. The inner cylinders have hot surfaces and the outer enclosure has a cold surfaces. The annular space between inner cylinders and the outer one was filled with incompressible Newtonian fluid. The work examined the behavior of fluid flow in the process of transferring heat energy. The work was achieved numerically using the commercial code ANSYS-CFX. The adopted initial conditions were selected for these ranges: Prantl number (Pr = 1 to 103), Rayleigh number (Ra = 103 to 105). It was found that the increment of Ra number increases the rate of heat transfer. However, the effect of Pr number on heat transfer is almost negligible.


2018 ◽  
Vol 28 (8) ◽  
pp. 1774-1790 ◽  
Author(s):  
Jiaolin Wang ◽  
Ye Zhou ◽  
Qi-Hong Deng

Purpose The purpose of this study is to investigate the flow interaction between the cavities and its impact on heat transfer. The role of the openings is examined and three strategies are considered: one opening, two openings on single side and two openings on double sides. Design/methodology/approach A two-dimensional laminar natural convection heat transfer in multilayered open cavities was numerically investigated. The governing equations in primitive variables were discretized by the finite volume method and solved by SIMPLE algorithm. Findings The results show that for the cavities with one opening, the flow in the cavities is connected with each other. The exhaust hot fluid from the lower cavity was entrained into the upper cavities by thermal buoyancy and hence the heat transfer in the upper cavities was decreased because of thermal accumulation. Two openings on the single side could strengthen the flow interaction between the cavities and then enhance the heat transfer. However, the double-sided openings eliminated the flow interaction between the cavities and thus the fluid flow and heat transfer characteristics in all cavities are independent. It was concluded that the flow interaction between the multilayered open cavities has an importance effect on the heat transfer in the cavities. Originality/value The flow interaction between the multilayered open cavities was illustrated. The effect of flow interaction on the heat transfer in the cavities was investigated. The role of openings in the flow interaction and heat transfer in cavities was explored. The cavity below affects above cavity for the openings on single side. No interaction exists between the cavities with openings on double sides.


10.30544/481 ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 87-102 ◽  
Author(s):  
Houssem Laidoudi

The two-dimensional numerical investigation is well accomplished to understand the behavior of buoyancy-driven flow in closed annular space. The studied domain consists of a pair of equal-sized circular cylinders in tandem arrangement confined in a circular enclosure which is filled with incompressible Newtonian fluid. The inner cylinders are identical in size and they are supposed to be hot with constant temperature, the outer circular enclosure is kept cold with a constant temperature. The descriptive governing equations of continuity, momentum and energy for the present problem are solved numerically using the finite-volume method. The present research studies the effects of thermal buoyancy strength, the thermophysical characteristics of the fluid, and the size of the inner cylinders on the flow patterns inside the circular domain and rate of heat transfer exchanging between the inner cylinders and fluid flow. The results showed that the studied governing parameters significantly affect the fluid flow and heat transfer rate. An increase in the diameter of inner cylinders makes the effect of buoyancy strength on fluid flow and heat transfer negligible for all values of thermo-physical parameters. Also, the average Nusselt number of each inner cylinder is computed and plotted for industrial applications.


2018 ◽  
Vol 16 ◽  
pp. 21-29
Author(s):  
Houssem Laidoudi ◽  
Mohamed Bouzit

2D simulations of incompressible fluid in plan channel of waved bottom wall is carried out in this paper to understand and to determine correctly the effects of the Reynolds, Prandtl and Richardson numbers on the fluid flow and heat transfer of waved channel wall. The governing equations involving continuity, momentum and energy are solved numerically based on commercial code which called ANSYS-CFX. The results are presented and discussed for the range of following conditions as:Re= 60 to 250,Pr= 0.7 to 30,Ri= 0 to 1 at fixed value of blockage ratio. The numerical results showed that increase in Richardson number and/ or Prantl number For Reynolds number limited between 60 and 200 increases tightly the heat transfer rate. For the value 250 of Reynolds number increase in the buoyancy strength reduces the value of heat transfer rate.


2017 ◽  
Vol 378 ◽  
pp. 59-67
Author(s):  
Houssem Laidoudi ◽  
Blissag Bilal ◽  
Mohamed Bouzit

A numerical investigation is carried out to understand the effects of thermal buoyancy and Reynolds number on flow characteristics and mixed convection heat transfer over three isothermal circular cylinders situated in a tandem arrangement within a horizontal channel. The distance between cylinders is fixed at the value of 2.5 widths of the cylinder. The obtained results are presented and discussed for the range of conditions as: Re = 5 to 40, Ri = 0 to 2 at fixed Pr number of 1 and blockage ratio β = 0.25. The main results are depicted in terms of streamlines and isotherm contours to analyze the effect of thermal buoyancy on fluid flow and heat transfer rate. Moreover, the overall drag coefficient and Nusselt number are computed to elucidate the role of Reynolds number and Richardson number on the flow and heat transfer. It is found that increase in the Richardson number increases the drag coefficient of the upstream cylinder whereas it decreases the heat transfer rate of this cylinder. The superimposed of thermal buoyancy created a new sort of recirculation zones between the tandem cylinders.


Sign in / Sign up

Export Citation Format

Share Document