scholarly journals DESIGN-BUILD PROJECT APPROACH IN A FIRST YEAR ENGINEERING DESIGN COURSE

Author(s):  
George Platanitis ◽  
Remon Pop-Iliev

We found that first-year engineering students often have difficulties to visualize and manipulate three-dimensional objects mentally, especially if the assembly involves multiple parts that need to work together in sequence to produce a required function. Ultimately, this lack of ability leads to poor representation of intended students’ design concepts in paper sketches, as well as poor or unacceptable detailed designs in CAD. Therefore, it is imperative that students develop their ability to manipulate complex objects in space very early in their academic careers. In this context, this paper focuses on the introduction and implementation of a challenging design-build project in the first-year engineering design course at UOIT intended to provide students with early opportunities to physically realize the spatial relationships and the three dimensional causality of the interaction of moving parts in an assembly.

2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Anant Chawla ◽  
Joshua D. Summers

Although morphological charts are widely taught used tools in engineering design, little formal guidance is provided regarding their representation and exploration. Thus, an experiment was conducted to elucidate the influence of functional ordering on the exploration of morphological charts. Two design prompts were used, each with five different functional arrangements: (1) most-to-least important function, (2) least-to-most important function, (3) input-to-output function, (4) output-to-input function, and (5) Random. Sixty-seven junior mechanical engineering students were asked to generate integrated design concepts from prepopulated morphological charts for each design prompt. The concepts were analyzed to determine the frequency with which a given means was selected, how much of the chart was explored, the sequence of exploration, and the influence of function ordering. Results indicated a tendency to focus upon the initial columns of the chart irrespective of functional order. The most-to-least-important functional order resulted in higher chances and a uniformity of design space exploration.


Author(s):  
Michael McGuire ◽  
Kin Fun Li ◽  
Fayez Gebali

Design is associated with the invention,planning and building a product. Engineering design, inparticular, takes considerable effort, skills, andintegration of knowledge; hence, it is difficult to teachfreshmen this subject since they have not possessed ordeveloped the proper skill set yet. The Faculty ofEngineering at the University of Victoria has beenteaching engineering design (in two successive courses)to all first-year engineering students. In addition toattending plenary lectures, student teams are working oncompetitive projects in the laboratory, while participatingin highly integrated communication modules. In thiswork, we discuss the curricula of these design courses,model of delivery and share our experience for the pastthree years.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Christine A. Toh ◽  
Scarlett R. Miller ◽  
Gül E. Okudan Kremer

Although design novelty is a critical area of research in engineering design, most research in this space has focused on understanding and developing formal idea generation methods instead of focusing on the impact of current design practices. This is problematic because formal techniques are often not adopted in industry due to the burdensome steps often included in these methods, which limit the practicality and adoption of these methods. This study seeks to understand the impact of product dissection, a design method widely utilized in academia and industry, on design novelty in order to produce recommendations for the use or alterations of this method for supporting novelty in design. To investigate the impact of dissection, a study was conducted with 76 engineering students who completed a team-based dissection of an electric toothbrush and then individually generated ideas. The relationships between involvement in the dissection activity, the product dissected, the novelty and quantity of the ideas developed were investigated. The results reveal that team members who were more involved in the dissection activity generated concepts that were more novel than those who did not. In addition, the type of the dissected product also had an influence on design novelty. Finally, a positive correlation between the number of ideas generated and the novelty of the design concepts was identified. The results from this study are used to provide recommendations for leveraging product dissection for enhancing novelty in engineering design education and practice.


2018 ◽  
Author(s):  
Christopher McComb ◽  
Catherine Berdanier ◽  
Jessica Menold

This paper describes the design and evaluation of a novel assessment for first-year engineering design courses that is rooted in an authentic design challenge. This approach modifies the traditional written-exam approach typically found in engineering courses, which is inherently inauthentic and cannot easily capture the exploratory nature of engineering design. Our assessment improves alignment with common learning objectives found in first-year engineering design courses and additionally prepares students for the type of case study interviews that are increasingly common for entry-level engineering jobs. To evaluate our assessment, 50 first-year students completed the engineering design self-efficacy instrument once before beginning the assessment and a second time approximately 48 hours later upon completion of a reflection assignment. In addition, students retrospectively reported their perceived change in self-efficacy during the assessment. Analysis shows that students perceived a large retrospective increase in skill level, despite only a small increase in directly measured self-efficacy. These results are analyzed in light of the Dunning-Kruger effect and we posit that the assessment helps to align students’ self-efficacy with their actual skill level. Increased alignment of self-efficacy with skill level may minimize student frustration when encountering challenging tasks in the future, potentially increasing retention of engineering students as well as facilitating the development of lifelong learning attitudes.


Author(s):  
Zoja Veide ◽  
Veronika Strozheva

<p class="R-AbstractKeywords"><span lang="EN-US">Development of spatial representation (the ability to imagine three-dimensional objects using flat pictures or drawings), skills of the intuitive decision of spatial problems and more meaningful use of CAD software are essential for qualified education of students. Visualization of geometric problems helps students to understand and to solve the given geometric tasks. The paper describes types of visualization of geometrical objects from graphic exercises of compulsory subject “Civil Engineering</span><span lang="EN-US">Graphics”. This course is specified for Civil engineering undergraduate 2nd year students of Riga Technical university.</span></p><p class="R-AbstractKeywords"><span lang="EN-US">Performance of a breadboard model, creation of the given model using ArchiCAD and using augmented reality (AR) software are included in the course "Civil Engineering Graphics” assignments. The examples of the tasks of 3D modeling in learning process are presented in this article. AR application allows faster understanding of complicated spatial problems and relationships and was used to entertain the students during the studies. Before mentioned approach was enabled to develop spatial skills of students, facilitate the students to obtain more practical experience in solving graphic exercises and was supposed enhance the quality of graphic education</span><span lang="EN-US">. </span></p><p class="R-AbstractKeywords"><span lang="EN-US"> </span></p>


Author(s):  
Mohammad Alsager Alzayed ◽  
Scarlett R. Miller ◽  
Jessica Menold ◽  
Jacquelyn Huff ◽  
Christopher McComb

Abstract Research on empathy has been surging in popularity in the engineering design community since empathy is known to help designers develop a deeper understanding of the users’ needs. Because of this, the design community has been invested in devising and assessing empathic design activities. However, research on empathy has been primarily limited to individuals, meaning we do not know how it impacts team performance, particularly in the concept generation and selection stages of the design process. Specifically, it is unknown how the empathic composition of teams, average (elevation) and standard deviation (diversity) of team members’ empathy, would impact design outcomes in the concept generation and selection stages of the design process. Therefore, the goal of the current study was to investigate the impact of team trait empathy on concept generation and selection in an engineering design student project. This was accomplished through a computational simulation of 13,482 teams of noninteracting brainstorming individuals generated by a statistical bootstrapping technique drawing upon a design repository of 806 ideas generated by first-year engineering students. The main findings from the study indicate that the elevation in team empathy positively impacted simulated teams’ unique idea generation and selection while the diversity in team empathy positively impacted teams’ generation of useful ideas. The results from this study can be used to guide team formation in engineering design.


2014 ◽  
Vol 136 (9) ◽  
Author(s):  
Christine A. Toh ◽  
Scarlett R. Miller

Interacting with example products is an essential and widely practiced method in engineering design, yet little information exists on how the representation (pictorial or physical) or interaction a designer has with an example impacts design creativity. This is problematic because without this knowledge we do not understand how examples affect idea generation or how we can effectively modify or develop design methods to support example usage practices. In this paper, we report the results of a controlled study with first year engineering design students (N = 89) developed to investigate the impact of a designer's interaction with either a two-dimensional (2D) pictorial image or a three-dimensional (3D) product (through visual inspection or product dissection activities) and the resulting functional focus and creativity of the ideas developed. The results of this study reveal that participants who interacted with the physical example produced ideas that were less novel and less functionally focused than those who interacted with the 2D representation. Additionally, the results showed that participants who dissected the product produced a higher variety of ideas than those that visually inspected it. These results contribute to our understanding of the benefits and role of 2D and 3D designer-product interactions during idea development. We use these findings to develop recommendations for the use of designer-product interactions throughout the design process.


Sign in / Sign up

Export Citation Format

Share Document