DEPLOYING ENGINEERING CASES TO FACILITATE PROBLEM-BASED THINKING IN ENGINEERING COMMUNICATIONS

Author(s):  
George Lamont ◽  
Stephan Lambert

  First-year engineering students often struggle to communicate the value of their work because they do not understand how problem-based reasoning drives engineering research and industry. Recognizing the effectiveness of discipline-specific teaching of the conventions of engineering communications, researchers have recently suggested the value of teaching the Swales "CARS" model to help students contextualize and justify their work. In two sections of Communications for the Engineering Profession at the University of Waterloo, we incorporated teaching of the Swales model of problem-based reasoning to help students understand the conventions of engineering communications, but found that authentic engineering documents are often too complex for this purpose. To address this limitation, we deployed engineering cases in two electrical/computer engineering courses to exemplify this model, and used pre-teaching and post-teaching surveys to measure students' perceptions of improvement in their ability to understand problem-based reasoning and apply it to project conceptualization. The results show that using simplified engineering cases of this kind both improves students' ability to use this model and improves their confidence in doing so. This outcome has implications for increasingly popular engineering-communications courses because it demonstrates the value of using realistic but simplified engineering scenarios to teach the Swales model in authentic and effective engineering communication.

Author(s):  
Carolyn Labun

At the University of British Columbia Okanagan School of Engineering (SOE), first year engineering students take a 3-credit course in Engineering Communication. Designed to replace the traditional 3-credits of English taken by other first year students, APSC 176 introduces students to the fundamentals of engineering communication, with a strong emphasis on written communication. The paper is describes the types of assignments given to first year students, the techniques used to encourage meaningful revision of written assignments, and the methods used to evaluate written assignments. Particular attention will be paid to a two-week first term design project (such as the assignment, supplemental materials including exercises, and marking guidelines). It should be noted that the design is entirely conceptual - students are not required to develop a prototype, but rather to work with a team to develop (and subsequently, explain and market) a concept in response to an RFP.


Author(s):  
Derek Wright

–At the University of Waterloo, 1B electrical and computer engineering students participate in a series of hands-on, open-ended design activities. In particular, a wind-your-own motor activity has been trialed on four occasions. The activity is widely recognized as being fun, but are the students designing or kludging? The Kirkpatrick Model of Training Evaluation was used as a framework to assess student perceptions of the activity and to guide focus group discussions. The activity was iteratively improved to maintain a positive reaction while increasing student learning.


Author(s):  
Carol P. Jaeger ◽  
Peter M. Ostafichuk

Abstract A module on professionalism and ethics was developed and introduced in a recent redesign of the first year engineering curriculum at The University of British Columbia (UBC). Motivating factors for including this content in first year included providing students with a fuller understanding of the engineering profession, introducing content to support student development in multiple Canadian Engineering Accreditation Board (CEAB) graduate attributes, and providing education and support for students in the responsible use of peer review.  Additionally, feedback from senior engineering students indicated that students would benefit from inclusion of professionalism and ethics content earlier in the curriculum. In this paper, the structure and content of the module specifically related to ethics will be described, student feedback for the module will be presented, and key learnings will be discussed.


Author(s):  
Umar Iqbal ◽  
Deena Salem ◽  
David Strong

The objective of this paper is to document the experience of developing and implementing a second-year course in an engineering professional spine that was developed in a first-tier research university and relies on project-based core courses. The main objective of this spine is to develop the students’ cognitive and employability skills that will allow them to stand out from the crowd of other engineering graduates.The spine was developed and delivered for the first time in the academic year 2010-2011 for first-year general engineering students. In the year 2011-2012, those students joined different programs, and accordingly the second-year course was tailored to align with the different programs’ learning outcomes. This paper discusses the development and implementation of the course in the Electrical and Computer Engineering (ECE) department.


2018 ◽  
Vol 6 (1) ◽  
Author(s):  
Chinweike Eseonu ◽  
Martin A Cortes

There is a culture of disengagement from social consideration in engineering disciplines. This means that first year engineering students, who arrive planning to change the world through engineering, lose this passion as they progress through the engineering curriculum. The community driven technology innovation and investment program described in this paper is an attempt to reverse this trend by fusing community engagement with the normal engineering design process. This approach differs from existing project or trip based approaches – outreach – because the focus is on local communities with which the university team forms a long-term partnership through weekly in-person meetings and community driven problem statements – engagement.


Author(s):  
Stephen Mattucci ◽  
Jim Sibley ◽  
Jonathan Nakane ◽  
Peter Ostafichuk

Abstract – Giving and receiving feedback is a necessary, but often difficult skill for young engineers to acquire. We developed and piloted the delivery of a feedback model as part of the first-year engineering experience at the University of British Columbia. The approach is based on recognizing feedback as a form of professional communication, and that it requires practice to improve. We wove different aspects of communication skill development through two large newly-designed first-year introduction to engineering courses, building towards face-to-face feedback through a staged series of communication experiences. The full feedback model highlighted the nuances of face-to-face communication, and was called the "3×3", since it includes the three components involved in face-to-face feedback (sender, message, and receiver), each with three associated aspects. The sender uses appropriate words and body language, ensures proper interpretation, and is empathetic; the message is objective and non-judgmental, sufficiently detailed, and contains suggestions for improvement; and the receiver remains open and listening, acknowledges to the sender that they are listening, and clarifies to ensure understanding. Students applied what they had learned through an activity reviewing poster presentations from a major course design project. In the activity, they each had an opportunity to craft a feedback message before delivering the message face-to-face to a peer. Students then reflected on the feedback they received by summarizing the message, recognizing how the sender delivered the feedback, and identifying why the feedback was helpful. Student reflections were analyzed for themes from the 3×3 model. Students found feedback from peers particularly helpful when it was delivered in an appropriate and courteous manner, checked for proper interpretation, provided clear suggestions for improvement, and was coupled with praise of something that was done well. Providing students with a structured model allows them to follow a process in both providing effective face-to-face feedback, but also better appreciate why receiving feedback is beneficial in helping them improve.  


Author(s):  
Michael McGuire ◽  
Kin Fun Li ◽  
Fayez Gebali

Design is associated with the invention,planning and building a product. Engineering design, inparticular, takes considerable effort, skills, andintegration of knowledge; hence, it is difficult to teachfreshmen this subject since they have not possessed ordeveloped the proper skill set yet. The Faculty ofEngineering at the University of Victoria has beenteaching engineering design (in two successive courses)to all first-year engineering students. In addition toattending plenary lectures, student teams are working oncompetitive projects in the laboratory, while participatingin highly integrated communication modules. In thiswork, we discuss the curricula of these design courses,model of delivery and share our experience for the pastthree years.


Sign in / Sign up

Export Citation Format

Share Document