scholarly journals Development of High-Accuracy Defect Detection Algorithm for X-Ray Welding Image Inspection under Strong Noise, Low Contrast and Few Samples

2021 ◽  
Vol 87 (12) ◽  
pp. 1003-1007
Author(s):  
Kenji IWATA ◽  
Tomohiro MATSUMOTO ◽  
Keiko AOYAMA ◽  
Keisuke KAJIKAWA ◽  
Koji GOTO ◽  
...  
Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2524 ◽  
Author(s):  
Guo Zhao ◽  
Shiyin Qin

Automatic defect detection is an important and challenging issue in the tire industrial quality control. As is well known, the production quality of tire is directly related to the vehicle running safety and passenger security. However, it is difficult to inspect the inner structure of tire on the surface. This paper proposes a high-precision detection of defects of tire texture image obtained by X-ray image sensor for tire non-destructive inspection. In this paper, the feature distribution generated by local inverse difference moment (LIDM) features is proposed to be an effective representation of tire X-ray texture image. Further, the defect feature map (DFM) may be constructed by computing the Hausdorff distance between the LIDM feature distributions of original tire image and each sliding image patch. Moreover, DFM may be enhanced to improve the robustness of defect detection algorithm by a background suppression. Finally, an effective defect detection algorithm is proposed to achieve the pixel-level detection of defects with high precision over the enhanced DFM. In addition, the defect detection algorithm is not only robust to the noise in the background, but also has a more powerful capability of handling different shapes of defects. To validate the performance of our proposed method, two kinds of experiments about the defect feature map and defect detection are conducted to demonstrate its good performance. Moreover, a series of comparative analyses demonstrate that the proposed algorithm can accurately detect the defects and outperforms other algorithms in terms of various quantitative metrics.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Qiang Guo ◽  
Caiming Zhang ◽  
Hui Liu ◽  
Xiaofeng Zhang

Automatic defect detection is an important and challenging problem in industrial quality inspection. This paper proposes an efficient defect detection method for tire quality assurance, which takes advantage of the feature similarity of tire images to capture the anomalies. The proposed detection algorithm mainly consists of three steps. Firstly, the local kernel regression descriptor is exploited to derive a set of feature vectors of an inspected tire image. These feature vectors are used to evaluate the feature dissimilarity of pixels. Next, the texture distortion degree of each pixel is estimated by weighted averaging of the dissimilarity between one pixel and its neighbors, which results in an anomaly map of the inspected image. Finally, the defects are located by segmenting this anomaly map with a simple thresholding process. Different from some existing detection algorithms that fail to work for tire tread images, the proposed detection algorithm works well not only for sidewall images but also for tread images. Experimental results demonstrate that the proposed algorithm can accurately locate the defects of tire images and outperforms the traditional defect detection algorithms in terms of various quantitative metrics.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 560
Author(s):  
Alexandra Carvalho ◽  
Mariana C. F. Costa ◽  
Valeria S. Marangoni ◽  
Pei Rou Ng ◽  
Thi Le Hang Nguyen ◽  
...  

We show that the degree of oxidation of graphene oxide (GO) can be obtained by using a combination of state-of-the-art ab initio computational modeling and X-ray photoemission spectroscopy (XPS). We show that the shift of the XPS C1s peak relative to pristine graphene, ΔEC1s, can be described with high accuracy by ΔEC1s=A(cO−cl)2+E0, where c0 is the oxygen concentration, A=52.3 eV, cl=0.122, and E0=1.22 eV. Our results demonstrate a precise determination of the oxygen content of GO samples.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryoya Shiode ◽  
Mototaka Kabashima ◽  
Yuta Hiasa ◽  
Kunihiro Oka ◽  
Tsuyoshi Murase ◽  
...  

AbstractThe purpose of the study was to develop a deep learning network for estimating and constructing highly accurate 3D bone models directly from actual X-ray images and to verify its accuracy. The data used were 173 computed tomography (CT) images and 105 actual X-ray images of a healthy wrist joint. To compensate for the small size of the dataset, digitally reconstructed radiography (DRR) images generated from CT were used as training data instead of actual X-ray images. The DRR-like images were generated from actual X-ray images in the test and adapted to the network, and high-accuracy estimation of a 3D bone model from a small data set was possible. The 3D shape of the radius and ulna were estimated from actual X-ray images with accuracies of 1.05 ± 0.36 and 1.45 ± 0.41 mm, respectively.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2949
Author(s):  
Marzieh Rabiei ◽  
Arvydas Palevicius ◽  
Amir Dashti ◽  
Sohrab Nasiri ◽  
Ahmad Monshi ◽  
...  

Taking into account X-ray diffraction, one of the well-known methods for calculating the stress-strain of crystals is Williamson-Hall (W–H). The W-H method has three models, namely (1) Uniform deformation model (UDM); (2) Uniform stress deformation model (USDM); and (3) Uniform deformation energy density model (UDEDM). The USDM and UDEDM models are directly related to the modulus of elasticity (E). Young’s modulus is a key parameter in engineering design and materials development. Young’s modulus is considered in USDM and UDEDM models, but in all previous studies, researchers used the average values of Young’s modulus or they calculated Young’s modulus only for a sharp peak of an XRD pattern or they extracted Young’s modulus from the literature. Therefore, these values are not representative of all peaks derived from X-ray diffraction; as a result, these values are not estimated with high accuracy. Nevertheless, in the current study, the W-H method is used considering the all diffracted planes of the unit cell and super cells (2 × 2 × 2) of Hydroxyapatite (HA), and a new method with the high accuracy of the W-H method in the USDM model is presented to calculate stress (σ) and strain (ε). The accounting for the planar density of atoms is the novelty of this work. Furthermore, the ultrasonic pulse-echo test is performed for the validation of the novelty assumptions.


Sign in / Sign up

Export Citation Format

Share Document