Key Advances in Display Manufacturing Technologies

2022 ◽  
Vol 88 (1) ◽  
pp. 26-31
Author(s):  
Yilong WANG
Author(s):  
Yakov Ben-Haim

Innovations create both opportunities and dilemmas. Innovations provide new and purportedly better opportunities, but—because of their newness—they are often more uncertain and potentially worse than existing options. There are new drugs, new energy sources, new foods, new manufacturing technologies, new toys and new pedagogical methods, new weapon systems, new home appliances, and many other discoveries and inventions. To use or not to use a new and promising but unfamiliar and hence uncertain innovation? That dilemma faces just about everybody. Furthermore, the paradigm of the innovation dilemma characterizes many situations even when a new technology is not actually involved. The dilemma arises from new attitudes, like individual responsibility for the global environment, or new social conceptions, like global allegiance and self-identity transcending all nation-states. These dilemmas have far-reaching implications for individuals, organizations, and society at large as they make decisions in the age of innovation. The uncritical belief in outcome optimization—“more is better, so most is best”—pervades decision-making in all domains, but this is often irresponsible when facing the uncertainties of innovation. There is a great need for practical conceptual tools for understanding and managing the dilemmas of innovation. This book offers a new direction for a wide audience. It discusses examples from many fields, including e-reading, online learning, bipolar disorder and pregnancy, disruptive technology in industry, stock markets, agricultural productivity and world hunger, military hardware, military intelligence, biological conservation, and more.


2021 ◽  
Vol 1 ◽  
pp. 231-240
Author(s):  
Laura Wirths ◽  
Matthias Bleckmann ◽  
Kristin Paetzold

AbstractAdditive Manufacturing technologies are based on a layer-by-layer build-up. This offers the possibility to design complex geometries or to integrate functionalities in the part. Nevertheless, limitations given by the manufacturing process apply to the geometric design freedom. These limitations are often unknown due to a lack of knowledge of the cause-effect relationships of the process. Currently, this leads to many iterations until the final part fulfils its functionality. Particularly for small batch sizes, producing the part at the first attempt is very important. In this study, a structured approach to reduce the design iterations is presented. Therefore, the cause-effect relationships are systematically established and analysed in detail. Based on this knowledge, design guidelines can be derived. These guidelines consider process limitations and help to reduce the iterations for the final part production. In order to illustrate the approach, the spare parts production via laser powder bed fusion is used as an example.


2021 ◽  
Vol 11 (3) ◽  
pp. 1312
Author(s):  
Ana Pamela Castro-Martin ◽  
Horacio Ahuett-Garza ◽  
Darío Guamán-Lozada ◽  
Maria F. Márquez-Alderete ◽  
Pedro D. Urbina Coronado ◽  
...  

Industry 4.0 (I4.0) is built upon the capabilities of Internet of Things technologies that facilitate the recollection and processing of data. Originally conceived to improve the performance of manufacturing facilities, the field of application for I4.0 has expanded to reach most industrial sectors. To make the best use of the capabilities of I4.0, machine architectures and design paradigms have had to evolve. This is particularly important as the development of certain advanced manufacturing technologies has been passed from large companies to their subsidiaries and suppliers from around the world. This work discusses how design methodologies, such as those based on functional analysis, can incorporate new functions to enhance the architecture of machines. In particular, the article discusses how connectivity facilitates the development of smart manufacturing capabilities through the incorporation of I4.0 principles and resources that in turn improve the computing capacity available to machine controls and edge devices. These concepts are applied to the development of an in-line metrology station for automotive components. The impact on the design of the machine, particularly on the conception of the control, is analyzed. The resulting machine architecture allows for measurement of critical features of all parts as they are processed at the manufacturing floor, a critical operation in smart factories. Finally, this article discusses how the I4.0 infrastructure can be used to collect and process data to obtain useful information about the process.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3888
Author(s):  
Johanna Maier ◽  
Christian Vogel ◽  
Tobias Lebelt ◽  
Vinzenz Geske ◽  
Thomas Behnisch ◽  
...  

Generative hybridization enables the efficient production of lightweight structures by combining classic manufacturing processes with additive manufacturing technologies. This type of functionalization process allows components with high geometric complexity and high mechanical properties to be produced efficiently in small series without the need for additional molds. In this study, hybrid specimens were generated by additively depositing PA6 (polyamide 6) via fused layer modeling (FLM) onto continuous woven fiber GF/PA6 (glass fiber/polyamide 6) flat preforms. Specifically, the effects of surface pre-treatment and process-induced surface interactions were investigated using optical microscopy for contact angle measurements as well as laser profilometry and thermal analytics. The bonding characteristic at the interface was evaluated via quasi-static tensile pull-off tests. Results indicate that both the bond strength and corresponding failure type vary with pre-treatment settings and process parameters during generative hybridization. It is shown that both the base substrate temperature and the FLM nozzle distance have a significant influence on the adhesive tensile strength. In particular, it can be seen that surface activation by plasma can significantly improve the specific adhesion in generative hybridization.


2021 ◽  
Vol 1 ◽  
pp. 2127-2136
Author(s):  
Olivia Borgue ◽  
John Stavridis ◽  
Tomas Vannucci ◽  
Panagiotis Stavropoulos ◽  
Harry Bikas ◽  
...  

AbstractAdditive manufacturing (AM) is a versatile technology that could add flexibility in manufacturing processes, whether implemented alone or along other technologies. This technology enables on-demand production and decentralized production networks, as production facilities can be located around the world to manufacture products closer to the final consumer (decentralized manufacturing). However, the wide adoption of additive manufacturing technologies is hindered by the lack of experience on its implementation, the lack of repeatability among different manufacturers and a lack of integrated production systems. The later, hinders the traceability and quality assurance of printed components and limits the understanding and data generation of the AM processes and parameters. In this article, a design strategy is proposed to integrate the different phases of the development process into a model-based design platform for decentralized manufacturing. This platform is aimed at facilitating data traceability and product repeatability among different AM machines. The strategy is illustrated with a case study where a car steering knuckle is manufactured in three different facilities in Sweden and Italy.


Sign in / Sign up

Export Citation Format

Share Document