On the participation of natural salts in alkaline magmatism. Article 3. Genetic aspects of the model of salt-alkaline interactions

LITOSFERA ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 172-197
Author(s):  
G. A. Belenitskaya

Research subject. An analysis of regional and global geological material characterizing the spatio-temporal relationships between alkaline magmatic and saline complexes allowed the author to propose and justify a new geological-genetic model of alkaline magmatism. This model considers saline complexes, located along the paths of the upward movement of deep magmas, as additional sources of alkaline and volatile components.Materials and methods. Three articles are devoted to the discussion and justification of this model. Two articles were devoted to geological aspects of the problem. The prerequisites and signs of the participation of ancient saline complexes in alkaline magmatism were characterized. It was shown that the presence of saline rocks in the deep zones of the earth's crust along the paths of the upward movement of deep magma flows is a geologically natural and common phenomenon. Natural alkaline-salt associations (spatio-temporal combinations of alkaline and salt objects) were indicated; their tectonic types were distinguished. A global overview of their different-age analogues (neo- and paleogeodynamic) was given.Results and discussion. The collected data made it possible to evaluate older (than magmas) salt-bearing complexes (deeply buried in the substrate) as a possible important and active participant in the ontogenesis of alkaline complexes, to give a positive assessment of the geological aspects of the “magma halocontamination” model and salt-magmatic interactions; to formulate the main geological-genetic provisions of this model.Conclusion. This article focuses on the discussion of the genetic aspects of the proposed model with an assessment of the probable role and significance of various halophilic components in the formation of alkaline magmas and their features. For this purpose, the similarity features in the spatial and quantitative distribution of halophilic and foydaphilic components in salt and alkaline rocks are considered; the probable role of various halophilic components in the formation of alkaline specialization of magmas, in the emergence of a rich set of unusual features of alkaline rocks (material, structural, morphological, etc.) is discussed. The probability of participation of the complex of paragenic (non-salt) members of the halophilic community (dolomites, anhydrites, black shales and associated ore components) in the interaction with hot magma is estimated. A comparative analysis of some basic provisions of the model under consideration with other geological-genetic models of alkaline petrogenesis is performed. The advantages of this model and its predictive capabilities are evaluated. A number of ideas have been proposed by the author for the first time, thus requiring further elucidation.

2020 ◽  
Author(s):  
Xiaoshuang Chen ◽  
Haijin Xu

<p>Alkaline magmatism is commonly generated in extensional settings, playing an important role in constraining the timing of slab breakoff. Eocene post-collisional magmatism is widely distributed along the Gangdese belt of southern Tibet. However, few Eocene post-collisional alkaline magmatism has been identified. Here, we present a comprehensive study of whole-rock geochemistry, zircon U-Pb ages and Sr-Nd-Hf isotopes of the Mayum alkaline complex from the Southern Lhasa Subterrane, providing an insight into the timing of breakoff of the Neo-Tethyan slab. The alkaline complex is composed of amphibolite syenite, quartz syenite and alkaline granite. The mafic microgranular enclaves are ubiquitous in the syenites. Zircon U-Pb analyses indicates that the alkaline rocks were generated in Early Eocene (ca. 53-50 Ma). These ages suggest that the alkaline rocks emplaced shortly (10-15Ma) after the continental collision between the Indian and Eurasian plates. The alkaline rocks have high SiO<sub>2 </sub>(64.32-77.36 wt.%), Na<sub>2</sub>O + K<sub>2</sub>O (6.63-9.03 wt.%) contents, low MgO (0.14-2.52 wt.%) contents. These rocks show obvious arc-like geochemical features in trace elements, i.e., enrichment in LILEs (e.g., Rb, K), LREEs, Th and U, and depletion in HFSEs (e.g., Nb, Ta, Ti), HREEs with strongly to moderately negative Eu anomalies (δEu=0.28–0.72). These features together with high FeO<sup>T</sup>/MgO, Ga/Al, Ce/Nb and Y/Nb values, and low Ba, Sr contents, suggesting that the Mayum alkaline rocks belong to an A2-type granitoids. Besides, the alkaline rocks have homogeneous initial <sup>87</sup>Sr/<sup>86</sup>Sr ratios (0.7052-0.7059) and negative ε<sub>Nd</sub>(t) values (-2.1 to -0.9) for whole-rock, and positive zircon ε<sub>Hf</sub>(t) values (+0.73 to +11.16). Nd-Hf isotope decoupling suggests that the alkaline was likely produced by mixing of mantle- and crust-derived magmas under a post-collisional extensional setting. Combined with previous published results, we propose that the slab breakoff of the subducting Neo-Tethyan oceanic lithosphere at least prior to Early Eocene (ca. 53Ma). The Eocene Mayum alkaline complex might be related to asthenosphere upwelling trigged by the slab breakoff.</p>


Mineralogia ◽  
2013 ◽  
Vol 44 (3-4) ◽  
pp. 115-124 ◽  
Author(s):  
Aleksandr N. Ponomarenko ◽  
Stepan G. Kryvdik ◽  
Aleksandr V. Grinchenko

AbstractThe Ukrainian Shield (USh) is a typical province of Proterozoic alkaline magmatism where about 50 massifs and occurrences of alkaline rocks and carbonatites have been found. In spite of the wide distribution of Devonian basaltic- and alkaline magmatic rocks in the Dnieper-Donetsk depression adjacent to the USh, and in a marginal zone of the USh adjacent to folded Donbass, only alkaline rocks of Proterozoic age (1.8-2.1 Ga) that have been identified in the central interior of the USh. Some discrete bodies of 2.8 Ga subalkaline rocks also occur in Bogdanivka massif (Azov area). Occurrences of both Proterozoic (prevailing) and Phanerozoic (Devonian) alkaline rocks and kimberlites are only found in the eastern part of the USh (Azov area). Kimberlites in the central part of the Ukrainian Shield (Kirovograd region) are also of Proterozoic age (ca 1.8 Ga). It is this predominance of Precambrian rocks that makes the USh so different from other alkaline provinces where Phanerozoic alkaline rocks and kimberlites commonly prevail over Precambrian rocks. The lack of Phanerozoic alkaline magmatism on USh is poorly understood. Two main complexes of alkaline rocks - alkaline-ultrabasic (carbonatitic) and gabbro- syenitic - are distinguished in the USh. There are also rare occurrences of rock types such as alkaline- and alkaline-feldspar granites that may represent one separate alkaline-granite complex. Alkaline rocks present in the Eastern (Azov) province and in the Western province display essentially different geochemical character. Those of the Eastern province show characteristics typical of alkaline-ultrabasic rocks (e.g. high contents of incompatible rare elementssuch as Nb, REE, Zr, Y, Sr, whereas those in the Western province are characterized by low contents of Nb and Zr, and REE in some cases. This fact is interpreted as reflecting different geodynamic conditions of their origin. The Eastern rocks were formed in rift settings, the Western rocks in crustal compressional settings (collision, subduction). Various mineral deposits of phosphorus (apatite), niobium, REE, yttrium and zirconium, including unusually rich ores of REE, Y and Zr (Azov and Yastrybetsky) are associated with the alkaline rocks and carbonatites of the USh.


2005 ◽  
Vol 142 (2) ◽  
pp. 187-207 ◽  
Author(s):  
N. İLBEYLİ

Collision-related rocks intrude metamorphic rocks overthrust by ophiolitic units to make up the Central Anatolian Crystalline Complex. A wide variety of rock types were produced by the latest Cretaceous magmatism in the complex. These rocks can be divided into three distinct units: (1) calc-alkaline (Ağaçören, Behrekdağ, Cefalıkdağ, Çelebi, Ekecikdağ, Halaçlı, Karamadazı, Kösefakılı, Terlemez, Üçkapılı, Yozgat); (2) sub-alkaline (Baranadağ); and (3) alkaline (Atdere, Davulalan, Eğrialan, Hamit, İdişdağı, Karaçayır). The calc-alkaline rocks are metaluminous/peraluminous I- to S-type plutons ranging from monzodiorite to granite. The sub-alkaline rocks are metaluminous I-type plutons ranging from monzonite to granite. The alkaline rocks are metaluminous to peralkaline plutons, predominantly A-type, ranging from foid-bearing monzosyenite to granite. These plutons crystallized under varying pressures (5.3–2.6 kbar) and a wide range of temperatures (858–698 °C) from highly oxidized magmas (log fO2 −17 to −12). All intrusive rocks display enrichment in LILE and LREE compare to HFSE and have high 87Sr/86Sr and low 143Nd/144Nd ratios. These characteristics indicate that these rocks are derived from a mantle source containing large subduction components, and have experienced assimilation coupled with fractional crystallization (AFC) during uprise through crust. The coexistence of calc-alkaline and alkaline magmatism in the complex may be ascribed to mantle source heterogeneity before collision. Either thermal perturbation of the metasomatized lithosphere by delamination of the thermal boundary layer or removal of a subducted plate (slab breakoff) are the likely mechanisms for the initiation of the collision-related magmatism in the complex.


2007 ◽  
Vol 45 (3) ◽  
pp. 270-294 ◽  
Author(s):  
S. G. Kryvdik ◽  
V. A. Nivin ◽  
A. A. Kul’chitskaya ◽  
D. K. Voznyak ◽  
A. M. Kalinichenko ◽  
...  

PLoS Genetics ◽  
2021 ◽  
Vol 17 (4) ◽  
pp. e1009479
Author(s):  
Alvaro Ingles-Prieto ◽  
Nikolas Furthmann ◽  
Samuel H. Crossman ◽  
Alexandra-Madelaine Tichy ◽  
Nina Hoyer ◽  
...  

Optogenetics has been harnessed to shed new mechanistic light on current and future therapeutic strategies. This has been to date achieved by the regulation of ion flow and electrical signals in neuronal cells and neural circuits that are known to be affected by disease. In contrast, the optogenetic delivery of trophic biochemical signals, which support cell survival and are implicated in degenerative disorders, has never been demonstrated in an animal model of disease. Here, we reengineered the human andDrosophila melanogasterREarranged during Transfection (hRET and dRET) receptors to be activated by light, creating one-component optogenetic tools termed Opto-hRET and Opto-dRET. Upon blue light stimulation, these receptors robustly induced the MAPK/ERK proliferative signaling pathway in cultured cells. In PINK1B9flies that exhibit loss of PTEN-induced putative kinase 1 (PINK1), a kinase associated with familial Parkinson’s disease (PD), light activation of Opto-dRET suppressed mitochondrial defects, tissue degeneration and behavioral deficits. In human cells with PINK1 loss-of-function, mitochondrial fragmentation was rescued using Opto-dRETviathe PI3K/NF-кB pathway. Our results demonstrate that a light-activated receptor can ameliorate disease hallmarks in a genetic model of PD. The optogenetic delivery of trophic signals is cell type-specific and reversible and thus has the potential to inspire novel strategies towards a spatio-temporal regulation of tissue repair.


2010 ◽  
Vol 138 (10) ◽  
pp. 1384-1390 ◽  
Author(s):  
E. GABRIEL ◽  
D. J. WILSON ◽  
A. J. H. LEATHERBARROW ◽  
J. CHEESBROUGH ◽  
S. GEE ◽  
...  

SUMMARYA total of 969 isolates of Campylobacter jejuni originating in the Preston, Lancashire postcode district over a 3-year period were characterized using multi-locus sequence typing. Recently developed statistical methods and a genetic model were used to investigate temporal, spatial, spatio-temporal and genetic variation in human C. jejuni infections. The analysis of the data showed statistically significant seasonal variation, spatial clustering, small-scale spatio-temporal clustering and spatio-temporal interaction in the overall pattern of incidence, and spatial segregation in cases classified according to their most likely species-of-origin.


Georesursy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 164-176
Author(s):  
Sergey A. Marakushev ◽  
Olga V. Belonogova

On the basis of an inorganic concept of the petroleum origin, the phase relationships of crystalline kerogens of black shales and liquid oil at the physicochemical conditions of a typical geobarotherm on the Texas Gulf Coast are considered. At the conditions of the carbon dioxide (CO2) high fluid pressure, the process of oil transformation into kerogens of varying degrees of “maturity” (retrograde metamorphism) takes place with decreasing temperature and hydrogen pressure. Kerogen generation in black shale rocks occurs by the sequential transition through metastable equilibria of liquid oil and crystalline kerogens (phase “freezing” of oil). The upward migration of hydrocarbons (HC) of oil fluids, clearly recorded in the processes of oil deposit replenishment in oil fields, shifts the oil ↔ kerogen equilibrium towards the formation of kerogen. In addition, with decreasing of the hydrogen chemical potential as a result of the process of high-temperature carboxylation and low-temperature hydration of oil hydrocarbons, the “mature” and “immature” kerogens are formed, respectively. The phase relationships of crystalline black shale kerogens and liquid oil under hypothetical conditions of high fluid pressure of the HC generated in the regime of geodynamic compression of silicate shells of the Earth in the result of the deep alkaline magmatism development. It is substantiated that a falling of hydrogen pressure in rising HC fluids will lead to the transformation of fluid hydrocarbons into liquid oil, and as the HC fluids rise to the surface, the HC ↔oil ↔ kerogen equilibrium will shift towards the formation of oil and kerogen. It is round that both in the geodynamic regime of compression and in the regime of expansion of the mantle and crust, carboxylation and hydration are the main geochemical pathways for the transformation of oil hydrocarbons into kerogen and, therefore, the most powerful geological mechanism for the black shale formations.


Sign in / Sign up

Export Citation Format

Share Document