scholarly journals Young’s modulus of iron and nickel in steels and alloys

2021 ◽  
Vol 2 (396) ◽  
pp. 67-72
Author(s):  
A. Bagerman ◽  
◽  
A. Troitsky ◽  
I. Leonova ◽  
◽  
...  

Object and purpose of research. The object is steels and alloys for high-temperature applications. The purpose of the study is to obtain the necessary data for predicting the Young’s modulus of steels and alloys before their full-scale tests. Materials and methods. The data on the Young’s modulus of pure metals and reference data on the Young’s modulus of steels and alloys for high-temperature applications are the materials used in this study. The study uses the concept of "constraint" parameter to rank steels and alloys. Main results. The Young’s moduli of iron and nickel were determined during their operation as a part of steels and alloys, an algorithm for the predictive assessment of the Young’s modulus of steels and alloys was compiled in the temperature range 20–800 °С. Conclusion. It is shown that in the absence of experimental data, the Young’s modulus of steels and alloys can be estimated by the value of the "available" Young’s modulus, determined by the value of the Young’s modulus of pure metals. The results of the study showed the possibility of changing the Young’s modulus of pure metals during their operation as a part of steels and alloys, the characteristics of the Young’s modulus of iron and nickel during their operation as a part of steels and alloys and the algorithm for predicting the Young’s modulus of steels and alloys based on these metals in the temperature range of 20–800 °C were obtained.

2012 ◽  
Vol 18 (7-8) ◽  
pp. 945-953 ◽  
Author(s):  
Oliver Pabst ◽  
Michael Schiffer ◽  
Ernst Obermeier ◽  
Tolga Tekin ◽  
Klaus Dieter Lang ◽  
...  

2011 ◽  
Author(s):  
Oliver Pabst ◽  
Michael Schiffer ◽  
Ernst Obermeier ◽  
Tolga Tekin ◽  
Klaus Dieter Lang ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 968
Author(s):  
Fumitada Iguchi ◽  
Keisuke Hinata

The elastic properties of 0, 10, 15, and 20 mol% yttrium-doped barium zirconate (BZY0, BZY10, BZY15, and BZY20) at the operating temperatures of protonic ceramic fuel cells were evaluated. The proposed measurement method for low sinterability materials could accurately determine the sonic velocities of small-pellet-type samples, and the elastic properties were determined based on these velocities. The Young’s modulus of BZY10, BZY15, and BZY20 was 224, 218, and 209 GPa at 20 °C, respectively, and the values decreased as the yttrium concentration increased. At high temperatures (>20 °C), as the temperature increased, the Young’s and shear moduli decreased, whereas the bulk modulus and Poisson’s ratio increased. The Young’s and shear moduli varied nonlinearly with the temperature: The values decreased rapidly from 100 to 300 °C and gradually at temperatures beyond 400 °C. The Young’s modulus of BZY10, BZY15, and BZY20 was 137, 159, and 122 GPa at 500 °C, respectively, 30–40% smaller than the values at 20 °C. The influence of the temperature was larger than that of the change in the yttrium concentration.


Holzforschung ◽  
2002 ◽  
Vol 56 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Ugai Watanabe ◽  
Minoru Fujita ◽  
Misato Norimoto

Summary The relationship between transverse Young's moduli and cell shapes in coniferous early wood was investigated using cell models constructed by two dimensional power spectrum analysis. The calculated values of tangential Young's modulus qualitatively explained the relationship between experimental values and density as well as the difference in experimental values among species. The calculated values of radial Young's modulus for the species having hexagonal cells agreed well with the experimental values, whereas, for the species having square cells, the calculated values were much larger than the experimental values. This result was ascribed to the fact that the bending moment on the radial cell wall of square cell models was calculated to be small. It is suggested that the asymmetrical shape of real wood cells or the behavior of nodes during ell deformation is an important factor in the mechanism of linear elastic deformation of wood cells.


2006 ◽  
Vol 41 (22) ◽  
pp. 7663-7666 ◽  
Author(s):  
E. Yeugo Fogaing ◽  
Y. Lorgouilloux ◽  
M. Huger ◽  
C. P. Gault

2015 ◽  
Vol 2015 (HiTEN) ◽  
pp. 000142-000152 ◽  
Author(s):  
Randy Hahn ◽  
Kristin Tempel

For decades the maximum recommended operating temperature of solid electrolytic capacitors was 125°C. Responding to needs in the automotive and downhole drilling industries passive component manufacturers developed surface mount tantalum capacitors rated at 150°C in 2002–2003. Since that time the industry has introduced high temperature capable tantalum capacitors generally in 25°C increments roughly every four years. Today multiple manufacturers have products rated at 230°C poised for market release. The tantalum anode, tantalum pentoxide dielectric and manganese dioxide primary cathode material stand up well to these temperatures, although some optimization of the design and manufacturing process for these materials have been required. The primary challenges encountered when developing solid electrolytic capacitors with high temperature capabilities are associated with the carbon, silver and epoxy encapsulant materials used in conventional surface mount tantalum capacitors. Capacitor manufacturers have taken different paths to overcome these challenges. We have developed a metallized plating process to avoid issues associated with silver paints utilized in conventional Ta capacitors. We have worked with suppliers, or developed in house capabilities, to manufacture the other materials required to withstand the rigors of high temperature applications. This paper will discuss these challenges and provide reliability test data on a recently developed tantalum surface mount series capable of continuous operation at 230°C.


1997 ◽  
Vol 293 (1-2) ◽  
pp. 144-148 ◽  
Author(s):  
T. Shinoda ◽  
N. Soga ◽  
T. Hanada ◽  
S. Tanabe

2020 ◽  
Vol 21 (4) ◽  
pp. 404
Author(s):  
Ankita Sinha ◽  
Atul Bhargav

Texture is an important attribute in the quality assessment of processed food products. Recently, Young's modulus is identified as one of the most important indicators of food texture. However, there is much ambiguity in the literature about quantification and standards for texture analysis. In this paper, the sensitivity of Young's modulus (and thus texture) towards the applied deformation rate, sample shape and size, moisture content is studied experimentally for potato and sweet potato samples. We found that Young's moduli vary by as much as 54% depending on the rate of applied strain, indicating the need for test standards. The strain rate dependent behaviour exhibits the viscoelastic nature of the potato samples, which was further validated by stress relaxation and cyclic tests. Based on our experimental iterations and associated finding of the work, we propose the need for a standardised procedure for measuring Young's modulus and texture analysis. We expect this work to serve as a crucial step toward standardised texture measurement during thermal processing of food products.


Sign in / Sign up

Export Citation Format

Share Document