scholarly journals Environmental Dependence of Chemiluminescence Using Solvatochromic Molecules

2021 ◽  
Vol 34 (4) ◽  
pp. 345-350
Author(s):  
Masaki Kayama ◽  
Kohei Iritani ◽  
Takashi Yamashita
2020 ◽  
Vol 500 (2) ◽  
pp. 2127-2145
Author(s):  
Christopher C Lovell ◽  
Aswin P Vijayan ◽  
Peter A Thomas ◽  
Stephen M Wilkins ◽  
David J Barnes ◽  
...  

ABSTRACT We introduce the First Light And Reionisation Epoch Simulations (FLARES), a suite of zoom simulations using the EAGLE model. We resimulate a range of overdensities during the Epoch of Reionization (EoR) in order to build composite distribution functions, as well as explore the environmental dependence of galaxy formation and evolution during this critical period of galaxy assembly. The regions are selected from a large $(3.2 \, \mathrm{cGpc})^{3}$ parent volume, based on their overdensity within a sphere of radius 14 h−1 cMpc. We then resimulate with full hydrodynamics, and employ a novel weighting scheme that allows the construction of composite distribution functions that are representative of the full parent volume. This significantly extends the dynamic range compared to smaller volume periodic simulations. We present an analysis of the galaxy stellar mass function (GSMF), the star formation rate distribution function (SFRF), and the star-forming sequence (SFS) predicted by FLARES, and compare to a number of observational and model constraints. We also analyse the environmental dependence over an unprecedented range of overdensity. Both the GSMF and the SFRF exhibit a clear double-Schechter form, up to the highest redshifts (z = 10). We also find no environmental dependence of the SFS normalization. The increased dynamic range probed by FLARES will allow us to make predictions for a number of large area surveys that will probe the EoR in coming years, carried out on new observatories such as Roman and Euclid.


2020 ◽  
Vol 500 (4) ◽  
pp. 4469-4490 ◽  
Author(s):  
James Trussler ◽  
Roberto Maiolino ◽  
Claudia Maraston ◽  
Yingjie Peng ◽  
Daniel Thomas ◽  
...  

ABSTRACT We investigate the environmental dependence of the stellar populations of galaxies in Sloan Digital Sky Survey Data Release 7 (SDSS DR7). Echoing earlier works, we find that satellites are both more metal-rich (<0.1 dex) and older (<2 Gyr) than centrals of the same stellar mass. However, after separating star-forming, green valley, and passive galaxies, we find that the true environmental dependence of both stellar metallicity (<0.03 dex) and age (<0.5 Gyr) is in fact much weaker. We show that the strong environmental effects found when galaxies are not differentiated result from a combination of selection effects brought about by the environmental dependence of the quenched fraction of galaxies, and thus we strongly advocate for the separation of star-forming, green valley, and passive galaxies when the environmental dependence of galaxy properties are investigated. We also study further environmental trends separately for both central and satellite galaxies. We find that star-forming galaxies show no environmental effects, neither for centrals nor for satellites. In contrast, the stellar metallicities of passive and green valley satellites increase weakly (<0.05 and <0.08 dex, respectively) with increasing halo mass, increasing local overdensity and decreasing projected distance from their central; this effect is interpreted in terms of moderate environmental starvation (‘strangulation’) contributing to the quenching of satellite galaxies. Finally, we find a unique feature in the stellar mass–stellar metallicity relation for passive centrals, where galaxies in more massive haloes have larger stellar mass (∼0.1 dex) at constant stellar metallicity; this effect is interpreted in terms of dry merging of passive central galaxies and/or progenitor bias.


2015 ◽  
Vol 24 (1) ◽  
pp. 119-127 ◽  
Author(s):  
Sara Jo M. Dickens ◽  
Seema Mangla ◽  
Kristine L. Preston ◽  
Katherine N. Suding

2021 ◽  
Author(s):  
J.Z. Chen ◽  
D.M. Fowler ◽  
N. Tokuriki

SummaryThe fitness landscape, a function that maps genotypic and phenotypic changes to their effects on fitness, is an invaluable concept in evolutionary biochemistry. Though widely discussed, measurements of phenotype-fitness landscapes in proteins remain scarce. Here, we quantify all single mutational effects on fitness and phenotype (antibiotic resistance level) of VIM-2 β-lactamase (5600 variants) across a 64-fold range of ampicillin concentrations by deep mutational scanning. We then construct a phenotype-fitness landscape that takes variations in environmental selection pressure into account (a phenotype-environment-fitness landscape). We found that a simple, empirical landscape accurately models the ~39,000 mutational data points, which suggests the evolution of VIM-2 can be predicted based on the selection environment. Our landscape provides new quantitative knowledge on the evolution of the β-lactamases and proteins in general, particularly their evolutionary dynamics under sub-inhibitory antibiotic concentrations, as well as the mechanisms and environmental dependence of nonspecific epistasis.


2020 ◽  
Vol 500 (1) ◽  
pp. 1323-1339
Author(s):  
Ciria Lima-Dias ◽  
Antonela Monachesi ◽  
Sergio Torres-Flores ◽  
Arianna Cortesi ◽  
Daniel Hernández-Lang ◽  
...  

ABSTRACT The nearby Hydra cluster (∼50 Mpc) is an ideal laboratory to understand, in detail, the influence of the environment on the morphology and quenching of galaxies in dense environments. We study the Hydra cluster galaxies in the inner regions (1R200) of the cluster using data from the Southern Photometric Local Universe Survey, which uses 12 narrow and broad-band filters in the visible region of the spectrum. We analyse structural (Sérsic index, effective radius) and physical (colours, stellar masses, and star formation rates) properties. Based on this analysis, we find that ∼88 per cent of the Hydra cluster galaxies are quenched. Using the Dressler–Schectman test approach, we also find that the cluster shows possible substructures. Our analysis of the phase-space diagram together with density-based spatial clustering algorithm indicates that Hydra shows an additional substructure that appears to be in front of the cluster centre, which is still falling into it. Our results, thus, suggest that the Hydra cluster might not be relaxed. We analyse the median Sérsic index as a function of wavelength and find that for red [(u − r) ≥2.3] and early-type galaxies it displays a slight increase towards redder filters (13 and 18 per cent, for red and early type, respectively), whereas for blue + green [(u − r)<2.3] galaxies it remains constant. Late-type galaxies show a small decrease of the median Sérsic index towards redder filters. Also, the Sérsic index of galaxies, and thus their structural properties, do not significantly vary as a function of clustercentric distance and density within the cluster; and this is the case regardless of the filter.


2018 ◽  
Author(s):  
Devon E. Pearse ◽  
Nicola J. Barson ◽  
Torfinn Nome ◽  
Guangtu Gao ◽  
Matthew A. Campbell ◽  
...  

AbstractTraits with different fitness optima in males and females cause sexual conflict when they have a shared genetic basis. Heteromorphic sex chromosomes can resolve this conflict and protect sexually antagonistic polymorphisms but accumulate deleterious mutations. However, many taxa lack differentiated sex chromosomes, and how sexual conflict is resolved in these species is largely unknown. Here we present a chromosome-anchored genome assembly for rainbow trout (Oncorhynchus mykiss) and characterize a 56 Mb double-inversion supergene that mediates sex-specific migration through sex-dependent dominance, a mechanism that reduces sexual conflict. The double-inversion contains key photosensory, circadian rhythm, adiposity, and sexual differentiation genes and displays frequency clines associated with latitude and temperature, revealing environmental dependence. Our results constitute the first example of sex-dependent dominance across a large autosomal supergene, a novel mechanism for sexual conflict resolution capable of protecting polygenic sexually antagonistic variation while avoiding the homozygous lethality and deleterious mutation load of heteromorphic sex chromosomes.


2013 ◽  
Vol 764 (2) ◽  
pp. 114 ◽  
Author(s):  
Wen-Hsin Hsu ◽  
Lee Hartmann ◽  
Lori Allen ◽  
Jesús Hernández ◽  
S. T. Megeath ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document