scholarly journals Environmental changes dictate selection and nonspecific epistasis in an empirical phenotype-environment-fitness landscape

2021 ◽  
Author(s):  
J.Z. Chen ◽  
D.M. Fowler ◽  
N. Tokuriki

SummaryThe fitness landscape, a function that maps genotypic and phenotypic changes to their effects on fitness, is an invaluable concept in evolutionary biochemistry. Though widely discussed, measurements of phenotype-fitness landscapes in proteins remain scarce. Here, we quantify all single mutational effects on fitness and phenotype (antibiotic resistance level) of VIM-2 β-lactamase (5600 variants) across a 64-fold range of ampicillin concentrations by deep mutational scanning. We then construct a phenotype-fitness landscape that takes variations in environmental selection pressure into account (a phenotype-environment-fitness landscape). We found that a simple, empirical landscape accurately models the ~39,000 mutational data points, which suggests the evolution of VIM-2 can be predicted based on the selection environment. Our landscape provides new quantitative knowledge on the evolution of the β-lactamases and proteins in general, particularly their evolutionary dynamics under sub-inhibitory antibiotic concentrations, as well as the mechanisms and environmental dependence of nonspecific epistasis.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
H. De Kort ◽  
J. G. Prunier ◽  
S. Ducatez ◽  
O. Honnay ◽  
M. Baguette ◽  
...  

AbstractUnderstanding how biological and environmental factors interactively shape the global distribution of plant and animal genetic diversity is fundamental to biodiversity conservation. Genetic diversity measured in local populations (GDP) is correspondingly assumed representative for population fitness and eco-evolutionary dynamics. For 8356 populations across the globe, we report that plants systematically display much lower GDP than animals, and that life history traits shape GDP patterns both directly (animal longevity and size), and indirectly by mediating core-periphery patterns (animal fecundity and plant dispersal). Particularly in some plant groups, peripheral populations can sustain similar GDP as core populations, emphasizing their potential conservation value. We further find surprisingly weak support for general latitudinal GDP trends. Finally, contemporary rather than past climate contributes to the spatial distribution of GDP, suggesting that contemporary environmental changes affect global patterns of GDP. Our findings generate new perspectives for the conservation of genetic resources at worldwide and taxonomic-wide scales.


2014 ◽  
Vol 5 (4) ◽  
pp. 388-396 ◽  
Author(s):  
Greta Bocedi ◽  
Stephen C.F. Palmer ◽  
Guy Pe'er ◽  
Risto K. Heikkinen ◽  
Yiannis G. Matsinos ◽  
...  

2018 ◽  
Author(s):  
Christelle Fraïsse ◽  
John J. Welch

AbstractFitness interactions between mutations can influence a population’s evolution in many different ways. While epistatic effects are difficult to measure precisely, important information about the overall distribution is captured by the mean and variance of log fitnesses for individuals carrying different numbers of mutations. We derive predictions for these quantities from simple fitness landscapes, based on models of optimizing selection on quantitative traits. We also explore extensions to the models, including modular pleiotropy, variable effects sizes, mutational bias, and maladaptation of the wild-type. We illustrate our approach by reanalysing a large data set of mutant effects in a yeast snoRNA. Though characterized by some strong epistatic interactions, these data give a good overall fit to the non-epistatic null model, suggesting that epistasis might have little effect on the evolutionary dynamics in this system. We also show how the amount of epistasis depends on both the underlying fitness landscape, and the distribution of mutations, and so it is expected to vary in consistent ways between new mutations, standing variation, and fixed mutations.


2020 ◽  
Vol 287 (1919) ◽  
pp. 20192818
Author(s):  
Estelle Laurent ◽  
Nicolas Schtickzelle ◽  
Staffan Jacob

Habitat fragmentation is expected to reduce dispersal movements among patches as a result of increased inter-patch distances. Furthermore, since habitat fragmentation is expected to raise the costs of moving among patches in the landscape, it should hamper the ability or tendency of organisms to perform informed dispersal decisions. Here, we used microcosms of the ciliate Tetrahymena thermophila to test experimentally whether habitat fragmentation, manipulated through the length of corridors connecting patches differing in temperature, affects habitat choice. We showed that a twofold increase of inter-patch distance can as expected hamper the ability of organisms to choose their habitat at immigration. Interestingly, it also increased their habitat choice at emigration, suggesting that organisms become choosier in their decision to either stay or leave their patch when obtaining information about neighbouring patches gets harder. This study points out that habitat fragmentation might affect not only dispersal rate but also the level of non-randomness of dispersal, with emigration and immigration decisions differently affected. These consequences of fragmentation might considerably modify ecological and evolutionary dynamics of populations facing environmental changes.


2019 ◽  
Vol 15 (4) ◽  
pp. 20180881 ◽  
Author(s):  
Christelle Fraïsse ◽  
John J. Welch

Fitness interactions between mutations can influence a population’s evolution in many different ways. While epistatic effects are difficult to measure precisely, important information is captured by the mean and variance of log fitnesses for individuals carrying different numbers of mutations. We derive predictions for these quantities from a class of simple fitness landscapes, based on models of optimizing selection on quantitative traits. We also explore extensions to the models, including modular pleiotropy, variable effect sizes, mutational bias and maladaptation of the wild type. We illustrate our approach by reanalysing a large dataset of mutant effects in a yeast snoRNA (small nucleolar RNA). Though characterized by some large epistatic effects, these data give a good overall fit to the non-epistatic null model, suggesting that epistasis might have limited influence on the evolutionary dynamics in this system. We also show how the amount of epistasis depends on both the underlying fitness landscape and the distribution of mutations, and so is expected to vary in consistent ways between new mutations, standing variation and fixed mutations.


2020 ◽  
Vol 148 ◽  
Author(s):  
F. Deeba ◽  
M. S. H. Haider ◽  
A. Ahmed ◽  
A. Tazeen ◽  
M. I. Faizan ◽  
...  

Abstract Chikungunya virus (CHIKV) is a re-emerging pathogen of global importance. We attempted to gain an insight into the organisation, distribution and mutational load of the virus strains reported from different parts of the world. We describe transmission dynamics and genetic characterisation of CHIKV across the globe during the last 65 years from 1952 to 2017. The evolutionary pattern of CHIKV was analysed using the E1 protein gene through phylogenetic, Bayesian and Network methods with a dataset of 265 sequences from various countries. The time to most recent common ancestor of the virus was estimated to be 491 years ago with an evolutionary rate of 2.78 × 10−4 substitutions/site/year. Genetic characterisation of CHIKV strains was carried out in terms of variable sites, selection pressure and epitope mapping. The neutral selection pressure on the E1 gene of the virus suggested a stochastic process of evolution. We identified six potential epitope peptides in the E1 protein showing substantial interaction with human MHC-I and MHC-II alleles. The present study augments global epidemiological and population dynamics of CHIKV warranting undertaking of appropriate control measures. The identification of epitopic peptides can be useful in the development of epitope-based vaccine strategies against this re-emerging viral pathogen.


2005 ◽  
Vol 15 (11) ◽  
pp. 1619-1638 ◽  
Author(s):  
ROBERT A. GATENBY ◽  
THOMAS L. VINCENT ◽  
ROBERT J. GILLIES

We have previously demonstrated intra- and extra-cellular factors that govern somatic evolution of the malignant phenotype can be modeled through evolutionary game theory, a mathematical approach that analyzes phenotypic adaptation to in-vivo environmental selection forces. Here we examine the global evolutionary dynamics that control evolutionary dynamics explicitly addressing conflicting data and hypothesis regarding the relative importance of the mutator phenotype and microenvironment controls. We find evolution of invasive cancer follows a biphasic pattern. The first phase occurs within normal tissue, which possesses a remarkable adaptive landscape that permits non-competitive coexistence of multiple cellular populations but renders it vulnerable to invasion. When random genetic mutations produce a fitter phenotype, self-limited clonal expansion is observed — equivalent to a polyp or nevus. This step corresponds to tumor initiation in classical skin carcinogenesis experiments because the mutant population deforms the adaptive landscape resulting in the emergence of unoccupied fitness peaks — a premalignant configuration because, over time, extant cellular populations will tend to evolve toward available fitness maxima forming an invasive cancer. We demonstrate that this phase is governed by intracellular processes, such as the mutation rate, that promote phenotypic diversity and environmental factors that control cellular selection and population growth. These results provide an integrative model of carcinogenesis that incorporates cell-centric approaches such as the mutator phenotype hypothesis with the critical role of the environmental demonstrated by Bissell and others. The biphasic dynamics of carcinogenesis give a quantitative framework of understanding for the empirically observed initiation and promotion/progression stages in skin carcinogenesis experimental models.


2017 ◽  
Vol 284 (1856) ◽  
pp. 20170516 ◽  
Author(s):  
J. Martínez-Padilla ◽  
A. Estrada ◽  
R. Early ◽  
F. Garcia-Gonzalez

Understanding and forecasting the effects of environmental change on wild populations requires knowledge on a critical question: do populations have the ability to evolve in response to that change? However, our knowledge on how evolution works in wild conditions under different environmental circumstances is extremely limited. We investigated how environmental variation influences the evolutionary potential of phenotypic traits. We used published data to collect or calculate 135 estimates of evolvability of morphological traits of European wild bird populations. We characterized the environmental favourability of each population throughout the species' breeding distribution. Our results suggest that the evolutionary potential of morphological traits decreases as environmental favourability becomes high or low. Strong environmental selection pressures and high intra-specific competition may reduce species' evolutionary potential in low- and high- favourability areas, respectively. This suggests that species may be least able to adapt to new climate conditions at their range margins and at the centre. Our results underscore the need to consider the evolutionary potential of populations when studying the drivers of species distributions, particularly when predicting the effects of environmental change. We discuss the utility of integrating evolutionary dynamics into a biogeographical perspective to understand how environmental variation shapes evolutionary patterns. This approach would also produce more reliable predictions about the effect of environmental change on population persistence and therefore on biodiversity.


Sign in / Sign up

Export Citation Format

Share Document