scholarly journals Object Recognition with and without Objects

Author(s):  
Zhuotun Zhu ◽  
Lingxi Xie ◽  
Alan Yuille

While recent deep neural networks have achieved a promising performance on object recognition, they rely implicitly on the visual contents of the whole image. In this paper, we train deep neural networks on the foreground (object) and background (context) regions of images respectively. Considering human recognition in the same situations, networks trained on the pure background without objects achieves highly reasonable recognition performance that beats humans by a large margin if only given context. However, humans still outperform networks with pure object available, which indicates networks and human beings have different mechanisms in understanding an image. Furthermore, we straightforwardly combine multiple trained networks to explore different visual cues learned by different networks. Experiments show that useful visual hints can be explicitly learned separately and then combined to achieve higher performance, which verifies the advantages of the proposed framework.

2018 ◽  
Vol 7 (3.6) ◽  
pp. 229
Author(s):  
Raswitha Bandi ◽  
J Amudhavel

Now a day’s Machine Learning Plays an important role in computer vision, object recognition and image classification. Recognizing objects in images is an interesting thing, this recognization can be done easily by human beings but the computer cannot. The Problem with traditional neural networks is object recognition. So, to avoid difficulties in recognition of objects in images the deep neural networks especially Tensor flow under Keras Library is used and it will improve the Accuracy while recognizing objects. In this paper we present object recognition using Keras Library with backend Tensor flow. 


2020 ◽  
Author(s):  
Soma Nonaka ◽  
Kei Majima ◽  
Shuntaro C. Aoki ◽  
Yukiyasu Kamitani

SummaryAchievement of human-level image recognition by deep neural networks (DNNs) has spurred interest in whether and how DNNs are brain-like. Both DNNs and the visual cortex perform hierarchical processing, and correspondence has been shown between hierarchical visual areas and DNN layers in representing visual features. Here, we propose the brain hierarchy (BH) score as a metric to quantify the degree of hierarchical correspondence based on the decoding of individual DNN unit activations from human brain activity. We find that BH scores for 29 pretrained DNNs with varying architectures are negatively correlated with image recognition performance, indicating that recently developed high-performance DNNs are not necessarily brain-like. Experimental manipulations of DNN models suggest that relatively simple feedforward architecture with broad spatial integration is critical to brain-like hierarchy. Our method provides new ways for designing DNNs and understanding the brain in consideration of their representational homology.


2018 ◽  
Vol 275 ◽  
pp. 1132-1139 ◽  
Author(s):  
Xiaoheng Jiang ◽  
Yanwei Pang ◽  
Xuelong Li ◽  
Jing Pan ◽  
Yinghong Xie

2020 ◽  
Vol 8 (6) ◽  
pp. 3992-3995

Object recognition the use deep neural networks has been most typically used in real applications. We propose a framework for identifying items in pics of very low decision through collaborative studying of two deep neural networks. It includes photo enhancement network object popularity networks. The picture correction community seeks to decorate images of much lower decision faster and more informative images with the usages of collaborative gaining knowledge of indicatores from object recognition networks. Object popularity networks actively participate in the mastering of photograph enhancement networks, with skilled weights for photographs of excessive resolution. It uses output from photograph enhancement networks as augmented studying recordes to reinforce the overall performance of its identity on a very low decision object. We esablished that the proposed method can improve photograph reconstruction and classification overall performance


Author(s):  
Yusuke Iwasawa ◽  
Kotaro Nakayama ◽  
Ikuko Yairi ◽  
Yutaka Matsuo

Deep neural networks have been successfully applied to activity recognition with wearables in terms of recognition performance. However, the black-box nature of neural networks could lead to privacy concerns. Namely, generally it is hard to expect what neural networks learn from data, and so they possibly learn features that highly discriminate user-information unintentionally, which increases the risk of information-disclosure. In this study, we analyzed the features learned by conventional deep neural networks when applied to data of wearables to confirm this phenomenon.Based on the results of our analysis, we propose the use of an adversarial training framework to suppress the risk of sensitive/unintended information disclosure. Our proposed model considers both an adversarial user classifier and a regular activity-classifier during training, which allows the model to learn representations that help the classifier to distinguish the activities but which, at the same time, prevents it from accessing user-discriminative information. This paper provides an empirical validation of the privacy issue and efficacy of the proposed method using three activity recognition tasks based on data of wearables. The empirical validation shows that our proposed method suppresses the concerns without any significant performance degradation, compared to conventional deep nets on all three tasks.


Author(s):  
Anibal Pedraza ◽  
Oscar Deniz ◽  
Gloria Bueno

AbstractThe phenomenon of Adversarial Examples has become one of the most intriguing topics associated to deep learning. The so-called adversarial attacks have the ability to fool deep neural networks with inappreciable perturbations. While the effect is striking, it has been suggested that such carefully selected injected noise does not necessarily appear in real-world scenarios. In contrast to this, some authors have looked for ways to generate adversarial noise in physical scenarios (traffic signs, shirts, etc.), thus showing that attackers can indeed fool the networks. In this paper we go beyond that and show that adversarial examples also appear in the real-world without any attacker or maliciously selected noise involved. We show this by using images from tasks related to microscopy and also general object recognition with the well-known ImageNet dataset. A comparison between these natural and the artificially generated adversarial examples is performed using distance metrics and image quality metrics. We also show that the natural adversarial examples are in fact at a higher distance from the originals that in the case of artificially generated adversarial examples.


2021 ◽  
Vol 16 (1) ◽  
pp. 1-23
Author(s):  
Keyu Yang ◽  
Yunjun Gao ◽  
Lei Liang ◽  
Song Bian ◽  
Lu Chen ◽  
...  

Text classification is a fundamental task in content analysis. Nowadays, deep learning has demonstrated promising performance in text classification compared with shallow models. However, almost all the existing models do not take advantage of the wisdom of human beings to help text classification. Human beings are more intelligent and capable than machine learning models in terms of understanding and capturing the implicit semantic information from text. In this article, we try to take guidance from human beings to classify text. We propose Crowd-powered learning for Text Classification (CrowdTC for short). We design and post the questions on a crowdsourcing platform to extract keywords in text. Sampling and clustering techniques are utilized to reduce the cost of crowdsourcing. Also, we present an attention-based neural network and a hybrid neural network to incorporate the extracted keywords as human guidance into deep neural networks. Extensive experiments on public datasets confirm that CrowdTC improves the text classification accuracy of neural networks by using the crowd-powered keyword guidance.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Benjamin Chandler ◽  
Ennio Mingolla

Heavily occluded objects are more difficult for classification algorithms to identify correctly than unoccluded objects. This effect is rare and thus hard to measure with datasets like ImageNet and PASCAL VOC, however, owing to biases in human-generated image pose selection. We introduce a dataset that emphasizes occlusion and additions to a standard convolutional neural network aimed at increasing invariance to occlusion. An unmodified convolutional neural network trained and tested on the new dataset rapidly degrades to chance-level accuracy as occlusion increases. Training with occluded data slows this decline but still yields poor performance with high occlusion. Integrating novel preprocessing stages to segment the input and inpaint occlusions is an effective mitigation. A convolutional network so modified is nearly as effective with more than 81% of pixels occluded as it is with no occlusion. Such a network is also more accurate on unoccluded images than an otherwise identical network that has been trained with only unoccluded images. These results depend on successful segmentation. The occlusions in our dataset are deliberately easy to segment from the figure and background. Achieving similar results on a more challenging dataset would require finding a method to split figure, background, and occluding pixels in the input.


Sign in / Sign up

Export Citation Format

Share Document