scholarly journals Learning Stochastic Equivalence based on Discrete Ricci Curvature

Author(s):  
Xuan Guo ◽  
Qiang Tian ◽  
Wang Zhang ◽  
Wenjun Wang ◽  
Pengfei Jiao

Role-based network embedding methods aim to preserve node-centric connectivity patterns, which are expressions of node roles, into low-dimensional vectors. However, almost all the existing methods are designed for capturing a relaxation of automorphic equivalence or regular equivalence. They may be good at structure identification but could show poorer performance on role identification. Because automorphic equivalence and regular equivalence strictly tie the role of a node to the identities of all its neighbors. To mitigate this problem, we construct a framework called Curvature-based Network Embedding with Stochastic Equivalence (CNESE) to embed stochastic equivalence. More specifically, we estimate the role distribution of nodes based on discrete Ricci curvature for its excellent ability to concisely representing local topology. We use a Variational Auto-Encoder to generate embeddings while a degree-guided regularizer and a contrastive learning regularizer are leveraged to improving both its robustness and discrimination ability. The effectiveness of our proposed CNESE is demonstrated by extensive experiments on real-world networks.

2021 ◽  
Vol 15 (4) ◽  
pp. 1-23
Author(s):  
Guojie Song ◽  
Yun Wang ◽  
Lun Du ◽  
Yi Li ◽  
Junshan Wang

Network embedding is a method of learning a low-dimensional vector representation of network vertices under the condition of preserving different types of network properties. Previous studies mainly focus on preserving structural information of vertices at a particular scale, like neighbor information or community information, but cannot preserve the hierarchical community structure, which would enable the network to be easily analyzed at various scales. Inspired by the hierarchical structure of galaxies, we propose the Galaxy Network Embedding (GNE) model, which formulates an optimization problem with spherical constraints to describe the hierarchical community structure preserving network embedding. More specifically, we present an approach of embedding communities into a low-dimensional spherical surface, the center of which represents the parent community they belong to. Our experiments reveal that the representations from GNE preserve the hierarchical community structure and show advantages in several applications such as vertex multi-class classification, network visualization, and link prediction. The source code of GNE is available online.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Weiwei Gu ◽  
Aditya Tandon ◽  
Yong-Yeol Ahn ◽  
Filippo Radicchi

AbstractNetwork embedding is a general-purpose machine learning technique that encodes network structure in vector spaces with tunable dimension. Choosing an appropriate embedding dimension – small enough to be efficient and large enough to be effective – is challenging but necessary to generate embeddings applicable to a multitude of tasks. Existing strategies for the selection of the embedding dimension rely on performance maximization in downstream tasks. Here, we propose a principled method such that all structural information of a network is parsimoniously encoded. The method is validated on various embedding algorithms and a large corpus of real-world networks. The embedding dimension selected by our method in real-world networks suggest that efficient encoding in low-dimensional spaces is usually possible.


Author(s):  
Yang Fang ◽  
Xiang Zhao ◽  
Zhen Tan

Network Embedding (NE) is an important method to learn the representations of network via a low-dimensional space. Conventional NE models focus on capturing the structure information and semantic information of vertices while neglecting such information for edges. In this work, we propose a novel NE model named BimoNet to capture both the structure and semantic information of edges. BimoNet is composed of two parts, i.e., the bi-mode embedding part and the deep neural network part. For bi-mode embedding part, the first mode named add-mode is used to express the entity-shared features of edges and the second mode named subtract-mode is employed to represent the entity-specific features of edges. These features actually reflect the semantic information. For deep neural network part, we firstly regard the edges in a network as nodes, and the vertices as links, which will not change the overall structure of the whole network. Then we take the nodes' adjacent matrix as the input of the deep neural network as it can obtain similar representations for nodes with similar structure. Afterwards, by jointly optimizing the objective function of these two parts, BimoNet could preserve both the semantic and structure information of edges. In experiments, we evaluate BimoNet on three real-world datasets and task of relation extraction, and BimoNet is demonstrated to outperform state-of-the-art baseline models consistently and significantly.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Dong Liu ◽  
Yan Ru ◽  
Qinpeng Li ◽  
Shibin Wang ◽  
Jianwei Niu

Network embedding aims to learn the low-dimensional representations of nodes in networks. It preserves the structure and internal attributes of the networks while representing nodes as low-dimensional dense real-valued vectors. These vectors are used as inputs of machine learning algorithms for network analysis tasks such as node clustering, classification, link prediction, and network visualization. The network embedding algorithms, which considered the community structure, impose a higher level of constraint on the similarity of nodes, and they make the learned node embedding results more discriminative. However, the existing network representation learning algorithms are mostly unsupervised models; the pairwise constraint information, which represents community membership, is not effectively utilized to obtain node embedding results that are more consistent with prior knowledge. This paper proposes a semisupervised modularized nonnegative matrix factorization model, SMNMF, while preserving the community structure for network embedding; the pairwise constraints (must-link and cannot-link) information are effectively fused with the adjacency matrix and node similarity matrix of the network so that the node representations learned by the model are more interpretable. Experimental results on eight real network datasets show that, comparing with the representative network embedding methods, the node representations learned after incorporating the pairwise constraints can obtain higher accuracy in node clustering task and the results of link prediction, and network visualization tasks indicate that the semisupervised model SMNMF is more discriminative than unsupervised ones.


2021 ◽  
pp. 1-12
Author(s):  
JinFang Sheng ◽  
Huaiyu Zuo ◽  
Bin Wang ◽  
Qiong Li

 In a complex network system, the structure of the network is an extremely important element for the analysis of the system, and the study of community detection algorithms is key to exploring the structure of the complex network. Traditional community detection algorithms would represent the network using an adjacency matrix based on observations, which may contain redundant information or noise that interferes with the detection results. In this paper, we propose a community detection algorithm based on density clustering. In order to improve the performance of density clustering, we consider an algorithmic framework for learning the continuous representation of network nodes in a low-dimensional space. The network structure is effectively preserved through network embedding, and density clustering is applied in the embedded low-dimensional space to compute the similarity of nodes in the network, which in turn reveals the implied structure in a given network. Experiments show that the algorithm has superior performance compared to other advanced community detection algorithms for real-world networks in multiple domains as well as synthetic networks, especially when the network data chaos is high.


Author(s):  
Yuanfu Lu ◽  
Chuan Shi ◽  
Linmei Hu ◽  
Zhiyuan Liu

Heterogeneous information network (HIN) embedding aims to embed multiple types of nodes into a low-dimensional space. Although most existing HIN embedding methods consider heterogeneous relations in HINs, they usually employ one single model for all relations without distinction, which inevitably restricts the capability of network embedding. In this paper, we take the structural characteristics of heterogeneous relations into consideration and propose a novel Relation structure-aware Heterogeneous Information Network Embedding model (RHINE). By exploring the real-world networks with thorough mathematical analysis, we present two structure-related measures which can consistently distinguish heterogeneous relations into two categories: Affiliation Relations (ARs) and Interaction Relations (IRs). To respect the distinctive characteristics of relations, in our RHINE, we propose different models specifically tailored to handle ARs and IRs, which can better capture the structures and semantics of the networks. At last, we combine and optimize these models in a unified and elegant manner. Extensive experiments on three real-world datasets demonstrate that our model significantly outperforms the state-of-the-art methods in various tasks, including node clustering, link prediction, and node classification.


2013 ◽  
Vol 209 ◽  
pp. 1-22 ◽  
Author(s):  
Shouhei Honda

AbstractWe call a Gromov–Hausdorff limit of complete Riemannian manifolds with a lower bound of Ricci curvature a Ricci limit space. Furthermore, we prove that any Ricci limit space has integral Hausdorff dimension, provided that its Hausdorff dimension is not greater than 2. We also classify 1-dimensional Ricci limit spaces.


2018 ◽  
Vol 21 (1) ◽  
pp. 182-197 ◽  
Author(s):  
Chang Su ◽  
Jie Tong ◽  
Yongjun Zhu ◽  
Peng Cui ◽  
Fei Wang

AbstractOwning to the rapid development of computer technologies, an increasing number of relational data have been emerging in modern biomedical research. Many network-based learning methods have been proposed to perform analysis on such data, which provide people a deep understanding of topology and knowledge behind the biomedical networks and benefit a lot of applications for human healthcare. However, most network-based methods suffer from high computational and space cost. There remain challenges on handling high dimensionality and sparsity of the biomedical networks. The latest advances in network embedding technologies provide new effective paradigms to solve the network analysis problem. It converts network into a low-dimensional space while maximally preserves structural properties. In this way, downstream tasks such as link prediction and node classification can be done by traditional machine learning methods. In this survey, we conduct a comprehensive review of the literature on applying network embedding to advance the biomedical domain. We first briefly introduce the widely used network embedding models. After that, we carefully discuss how the network embedding approaches were performed on biomedical networks as well as how they accelerated the downstream tasks in biomedical science. Finally, we discuss challenges the existing network embedding applications in biomedical domains are faced with and suggest several promising future directions for a better improvement in human healthcare.


2021 ◽  
Author(s):  
Weiren Yu ◽  
Sima Iranmanesh ◽  
Aparajita Haldar ◽  
Maoyin Zhang ◽  
Hakan Ferhatosmanoglu

AbstractRoleSim and SimRank are among the popular graph-theoretic similarity measures with many applications in, e.g., web search, collaborative filtering, and sociometry. While RoleSim addresses the automorphic (role) equivalence of pairwise similarity which SimRank lacks, it ignores the neighboring similarity information out of the automorphically equivalent set. Consequently, two pairs of nodes, which are not automorphically equivalent by nature, cannot be well distinguished by RoleSim if the averages of their neighboring similarities over the automorphically equivalent set are the same. To alleviate this problem: 1) We propose a novel similarity model, namely RoleSim*, which accurately evaluates pairwise role similarities in a more comprehensive manner. RoleSim* not only guarantees the automorphic equivalence that SimRank lacks, but also takes into account the neighboring similarity information outside the automorphically equivalent sets that are overlooked by RoleSim. 2) We prove the existence and uniqueness of the RoleSim* solution, and show its three axiomatic properties (i.e., symmetry, boundedness, and non-increasing monotonicity). 3) We provide a concise bound for iteratively computing RoleSim* formula, and estimate the number of iterations required to attain a desired accuracy. 4) We induce a distance metric based on RoleSim* similarity, and show that the RoleSim* metric fulfills the triangular inequality, which implies the sum-transitivity of its similarity scores. 5) We present a threshold-based RoleSim* model that reduces the computational time further with provable accuracy guarantee. 6) We propose a single-source RoleSim* model, which scales well for sizable graphs. 7) We also devise methods to scale RoleSim* based search by incorporating its triangular inequality property with partitioning techniques. Our experimental results on real datasets demonstrate that RoleSim* achieves higher accuracy than its competitors while scaling well on sizable graphs with billions of edges.


Sign in / Sign up

Export Citation Format

Share Document