scholarly journals The Feasibility of Using UAV Structure from Motion Photogrammetry to Extract HBIM of the Great Ziggurat of UR

2021 ◽  
pp. 4518-4528
Author(s):  
Hussein R Sarhan ◽  
Fanar M. Abed

Culture heritage reflects nation’s legacy and therefore should be protected from damage in order to pass it to future generations. Recently, such protection can be applied by 3D digitization techniques such as conservation, restoration, documentation, etc. The 3D digitalization of heritage assets has encountered numerous focus in the last two decades due to the development in data capturing techniques and technological advancement in 3D remote sensing (RS) approaches such as photogrammetry and laser scanning. However, the abundance of 3D information resources and spatial data modelling and analysis methods have urged stakeholders to adopt intelligent 3D data management system so called Building Information Modelling (BIM) to facilitate data approaching and management. Historic Building Information Model (HBIM) is a special case of the BIM system, however it reflects the possibility to apply the BIM technology to the historical and heritage buildings. In this research, Structure from motion (SfM) photogrammetric routine based on Unmanned Aerial Vehicles (UAVs) images was applied to build HBIM of the Great Ziggurat of Ur in the south of Iraq. Based on the 3D geometric and texturing information extracted through photogrammetry and the historical information provided, virtual reconstruction has been carried out using (HBIM) technology. This was achieved by applying realistic materials and texturing information in order to document the building, which is directed to investigate the feasibility of implementing image-based 3D modelling within HBIM environments. Restoring the missing parts of the Ziggurat temple was also a focus of this research by implementing reverse engineering methodologies based on available information considered within the extracted HBIM. This can successfully represent a complete virtual reality model and a management information system of the Ziggurat building to be passed to future generations. The work also includes data assessment and validation with the as-built model generated from reference measurements within Computer Aided Design (CAD) environment.

Author(s):  
S. Logothetis ◽  
E. Valari ◽  
E. Karachaliou ◽  
E. Stylianidis

Recent research on the field of Building Information Modelling (BIM) technology, revealed that except of a few, accessible and free BIM viewers there is a lack of Free & Open Source Software (FOSS) BIM software for the complete BIM process. With this in mind and considering BIM as the technological advancement of Computer-Aided Design (CAD) systems, the current work proposes the use of a FOSS CAD software in order to extend its capabilities and transform it gradually into a FOSS BIM platform. Towards this undertaking, a first approach on developing a spatial Database Management System (DBMS) able to store, organize and manage the overall amount of information within a single application, is presented.


Author(s):  
M. Faltýnová ◽  
E. Matoušková ◽  
J. Šedina ◽  
K. Pavelka

A project started last year called MORE-CONNECT, which focuses on the renovation of buildings (especially building facades) using prefabricated elements. The aim of this project is to create a competitive solution consisting of a technology and processes which enable fast, cost-effective renovation with minimal difficulties to inhabitants. Significant cost savings in renovation costs lies in the usage of prefabricated elements and the reduction of construction works on site. The precision of the prefabricated element depends on the precision of the construction, project and building documentation. This article offers an overview of the possible methods for building documentation and spatial data transfer into BIM (Building Information Modelling) software. The description of methods focuses on laser scanning and photogrammetry (including RPAS based), its advantages, disadvantages and limitations according to the documented building, level of renovation, situation on site etc. The next part involves spatial data transfer into BIM software. A proposed solution is tested in a case study.


Author(s):  
M. Faltýnová ◽  
E. Matoušková ◽  
J. Šedina ◽  
K. Pavelka

A project started last year called MORE-CONNECT, which focuses on the renovation of buildings (especially building facades) using prefabricated elements. The aim of this project is to create a competitive solution consisting of a technology and processes which enable fast, cost-effective renovation with minimal difficulties to inhabitants. Significant cost savings in renovation costs lies in the usage of prefabricated elements and the reduction of construction works on site. The precision of the prefabricated element depends on the precision of the construction, project and building documentation. This article offers an overview of the possible methods for building documentation and spatial data transfer into BIM (Building Information Modelling) software. The description of methods focuses on laser scanning and photogrammetry (including RPAS based), its advantages, disadvantages and limitations according to the documented building, level of renovation, situation on site etc. The next part involves spatial data transfer into BIM software. A proposed solution is tested in a case study.


Author(s):  
Atis Baumanis ◽  
Māris Kaļinka

The supply of surveying tools and software has grown rapidly in recent decades, as has the quality demands of surveying products from designers, customers and supervisors. This article examines innovative surveying methods and compares the methods in terms of accuracy, availability, and cost. The author, drawing on the views of industry leaders, has outlined future surveyor missions, tasks and opportunities to influence and improve the design process. The article explores the latest spatial data acquisition techniques like laser scanning, digital photogrammetry, LIDAR, Unmanned aerial vehicles (UAV), appliances and perspectives of Building Information Modelling (BIM) and Virtual Reality (VR) and Augmented Reality (AR) as parts of Extended Reality (XR) in design and visualization.


Author(s):  
Jean Doumit

Structure from motion (SFM) algorithms greatly facilitates the production of detailed 3D models from photographs we applied this technology for the purposes of Building Information Modeling (BIM) of a historic fortress in Lebanon. Aerial and terrestrial imagery processed in SFM-based software for exterior and interior 3D modeling of the fortress. In this paper, we applied new geospatial technologies, aerial and terrestrial photogrammetry for Historic Building Information Modeling HBIM database construction. The UAV used for aerial photogrammetry, a DJI Phantom 4 pro with a camera of 20 megapixels for building facades capturing and a DSLR camera for the terrestrial photogrammetry inside the fortress. Aerial and terrestrial images processed in Agisoft Photoscan for the construction of Toron fortress HBIM of a block Geographical Information System constituted from points cloud, Digital Surface Models (DSM) and Digital Ortho Models (DOM). HBIM is a novel prototype library of parametric objects, based on historic architectural and archeological data and a system for mapping parametric objects on to point clouds database. As a result, the production of Toron fortress HBIM database containing Geographical Information Systems (GIS) and Computer Aided Design (CAD) features and entities in the form of sections plans and 3D models for both the analysis and conservation of historic objects, structures, and environments.


2018 ◽  
Vol 933 (3) ◽  
pp. 52-62
Author(s):  
V.S. Tikunov ◽  
I.A. Rylskiy ◽  
S.B. Lukatzkiy

Innovative methods of aerial surveys changed approaches to information provision of projecting dramatically in last years. Nowadays there are several methods pretending to be the most efficient for collecting geospatial data intended for projecting – airborne laser scanning (LIDAR) data, RGB aerial imagery (forming 3D pointclouds) and orthoimages. Thermal imagery is one of the additional methods that can be used for projecting. LIDAR data is precise, it allows us to measure relief even under the vegetation, or to collect laser re-flections from wires, metal constructions and poles. Precision and completeness of the DEM, produced from LIDAR data, allows to define relief microforms. Airborne imagery (visual spectrum) is very widespread and can be easily depicted. Thermal images are more strange and less widespread, they use different way of image forming, and spectral features of ob-jects can vary in specific ways. Either way, the additional spectral band can be useful for achieving additional spatial data and different object features, it can minimize field works. Here different aspects of thermal imagery are described in comparison with RGB (visual) images, LIDAR data and GIS layers. The attempt to estimate the feasibility of thermal imag-es for new data extraction is made.


Author(s):  
Sebastian Hoppe Nesgaard Jensen ◽  
Mads Emil Brix Doest ◽  
Henrik Aanæs ◽  
Alessio Del Bue

AbstractNon-rigid structure from motion (nrsfm), is a long standing and central problem in computer vision and its solution is necessary for obtaining 3D information from multiple images when the scene is dynamic. A main issue regarding the further development of this important computer vision topic, is the lack of high quality data sets. We here address this issue by presenting a data set created for this purpose, which is made publicly available, and considerably larger than the previous state of the art. To validate the applicability of this data set, and provide an investigation into the state of the art of nrsfm, including potential directions forward, we here present a benchmark and a scrupulous evaluation using this data set. This benchmark evaluates 18 different methods with available code that reasonably spans the state of the art in sparse nrsfm. This new public data set and evaluation protocol will provide benchmark tools for further development in this challenging field.


Sign in / Sign up

Export Citation Format

Share Document