scholarly journals Effect of Seawater Irrigation on Water Relations and Fruit Quality in Potted Citrus Trees

2015 ◽  
Vol 84 (3) ◽  
pp. 195-201 ◽  
Author(s):  
Hisashi Yamada ◽  
Shota Takimoto ◽  
Daisuke Toshinari ◽  
Keiko Kataoka ◽  
Tsuyoshi Habu
2021 ◽  
Vol 12 ◽  
Author(s):  
Muqing Zhang ◽  
Palaniyandi Karuppaiya ◽  
Desen Zheng ◽  
Xiuxiu Sun ◽  
Jinhe Bai ◽  
...  

Huanglongbing (HLB) is one of the most devastating diseases of citrus, which is associated with Candidatus Liberibacter asiaticus (Las) in the United States. To date, no effective antimicrobial compound is commercially available to control the disease. In this study, we investigated the effects of different antimicrobial chemicals with suitable surfactants on HLB-affected matured citrus trees with emphasis on the fruit yield and quality. Each treatment was applied three times in a 2-week interval during the spring flush period, one time in summer and three times during the autumn flushing period. We extensively examined different parameters such as pathogenic index, disease index, tree canopy, fruit yield, quality, and nutritional status. The results showed that among the treatments, penicillin (PEN) with surfactant was most effective in suppressing Las titer in infected citrus trees, followed by Fosetyl-Al (ALI), Carvacrol (CARV), and Validamycin (VA). Fruit quality analysis revealed that PEN treatment increased the soluble solids content (SSC), whereas Oxytetracycline (OXY) treatment significantly reduced titratable acidity (TA) level and increased the SSC/TA ratio compared to the control. Nutrient analysis showed increased N and Zn levels in ALI and PEN treatments, and OXY treatment increased leaf P, K, S, and Mg levels compared to untreated control. Furthermore, B, Ca, Cu, Fe, and Mn in leaves were reduced in all chemical treatments than that of the untreated control. These findings revealed that some of the chemical treatments were able to suppress Las pathogen, enhance nutritional status in leaves, and improve tree growth and fruit quality of HLB-affected trees.


HortScience ◽  
2008 ◽  
Vol 43 (3) ◽  
pp. 730-736 ◽  
Author(s):  
Youssef Rouphael ◽  
Mariateresa Cardarelli ◽  
Giuseppe Colla ◽  
Elvira Rea

Limited water supply in the Mediterranean region is a major problem in irrigated agriculture. Grafting may enhance drought resistance, plant water use efficiency, and plant growth. An experiment was conducted in two consecutive growing seasons to determine yield, plant growth, fruit quality, leaf gas exchange, water relations, macroelements content in fruits and leaves, and water use efficiency of mini-watermelon plants [Citrullus lanatus (Thunb.) Matsum. and Nakai cv. Ingrid], either ungrafted or grafted onto the commercial rootstock ‘PS 1313’ (Cucurbita maxima Duchesne × Cucurbita moschata Duchesne), under open field conditions. Irrigation treatments were 1.0, 0.75, and 0.5 evapotranspiration rates. In both years (2006 and 2007), marketable yield decreased linearly in response to an increase in water stress. When averaged over year and irrigation rate, the total and marketable yields were higher by 115% and 61% in grafted than in ungrafted plants, respectively. The fruit quality parameters of grafted mini-watermelons such as fruit dry matter and total soluble solids content were similar in comparison with those of ungrafted plants, whereas titratable acidity, K, and Mg concentrations improved significantly. In both grafting combinations, yield water use efficiency (WUEy) increased under water stress conditions with higher WUE values recorded in grafted than ungrafted plants. The concentration of N, K, and Mg in leaves was higher by 7.4%, 25.6%, and 38.8%, respectively, in grafted than in ungrafted plants. The net assimilation of CO2, stomatal conductance, relative water content, leaf, and osmotic potential decreased under water stress conditions. The sensitivity to water stress was similar between grafted and ungrafted plants, and the higher marketable yield from grafted plants was mainly the result of an improvement in nutritional status and higher CO2 assimilation and water uptake from the soil.


2019 ◽  
Vol 253 ◽  
pp. 80-86 ◽  
Author(s):  
C. Liu ◽  
L.P. Huang ◽  
M.L. Liu ◽  
S.Q. Hao ◽  
Heng Zhai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document