scholarly journals The Microstructural Transformation and Dynamical Properties in Sodium-silicate: Molecular Dynamics Simulation

Author(s):  
Nguyen Thi Thanh Ha ◽  
Tran Thuy Duong ◽  
Nguyen Hoai Anh

Molecular dynamics simulation of sodium-silicate has been carried out to investigate the microstructural transformation and diffusion mechanism. The microstructure of sodium silicate is studied by the pair radial distribution function, distribution of SiOx (x=4,5,6), OSiy (y=2,3) basic unit, bond angle distribution. The simulation results show that the structure of sodium silicate occurs the transformation from a tetrahedral structure to an octahedral structure under pressure. The additional network-modifying cation oxide breaking up this network by the generation of non-bridging O atoms and it has a slight effect on the topology of SiOx and OSiy units. Moreover, the diffusion of network- former atom in sodium-silicate melt is anomaly and diffusion coefficient for sodium atom is much larger than for oxygen or silicon atom. The simulation proves two diffusion mechanisms of the network-former atoms and modifier atoms.

2011 ◽  
Vol 697-698 ◽  
pp. 192-197 ◽  
Author(s):  
Ting Ting Zhou ◽  
Chuan Zhen Huang ◽  
Han Lian Liu ◽  
Bin Zou ◽  
Hong Tao Zhu

The interfacial energy and diffusion phenomenon of the Al2O3(012)-SiC (011) interface model are studied based on molecular dynamics. The interfacial energy increases firstly until reaches its maximum 0.459J/m2at the temperature of 1500K and then decreases. The relationship of diffusion coefficients for each kind of atoms is C>Si>O>Al. Diffusion coefficients of atoms increase at first and then decrease as the temperature goes up. This indicates the diffusion mechanism has been changed during the temperature rising process.


2020 ◽  
Vol 34 (32) ◽  
pp. 2050312
Author(s):  
Nguyen Thi Thanh Ha

The structural transformation and diffusion mechanism of lithium-silicate melt is carried by molecular dynamics method. In order to investigate the nature of the pressure-induced structural transformations, the pair radial distribution function (PRDF), distribution of SiO[Formula: see text], OSi[Formula: see text] and LiO[Formula: see text] coordination units, bond angle distribution (BAD) and bond distance distribution (BDD) are analyzed. The investigation reveals that there is a structural transformation in the structure of lithium-silicate. The addition of alkali oxides results in the formation of nonbridging oxygens (NBOs) by disruption of the Si–O network and it has a slight effect on the topology of SiO[Formula: see text] and OSi[Formula: see text] units. Furthermore, we show that the diffusion of network-former atom in lithium-silicate melt is anomaly and Li atoms have significantly faster diffusion rate than those of oxygen or silicon atoms. Therefore, there is an existence of two diffusion mechanisms in lithium-silicate.


2020 ◽  
Vol 22 (39) ◽  
pp. 22529-22536
Author(s):  
Sofia O. Slavova ◽  
Anastasia A. Sizova ◽  
Vladimir V. Sizov

Simulation study of surface effects and diffusion in CO2-loaded cationic LTA zeolite produced CO2 and Na+ diffusion activation energies.


Sign in / Sign up

Export Citation Format

Share Document