scholarly journals Discrete Sliding Mode Control Design for Piezoelectric Actuator

2019 ◽  
Vol 3 (3) ◽  
pp. 492
Author(s):  
Van Huynh-Van ◽  
Phong Tran-Thanh

Piezoelectric bimorph actuators have been employed in several applications. In this paper, the piezoelectric actuator is discretized and its hysteresis function is studied, then a digital sliding mode controller is designed. Furthermore, a perturbation estimation technique is applied and an observer is no longer needed. In addition, simulations are performed also using the traditional PID controller in order to validate the proposed controller scheme performance.This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited. 

Author(s):  
Gurubasavaraju Tharehalli mata ◽  
Vijay Mokenapalli ◽  
Hemanth Krishna

This study assesses the dynamic performance of the semi-active quarter car vehicle under random road conditions through a new approach. The monotube MR damper is modelled using non-parametric method based on the dynamic characteristics obtained from the experiments. This model is used as the variable damper in a semi-active suspension. In order to control the vibration caused under random road excitation, an optimal sliding mode controller (SMC) is utilised. Particle swarm optimisation (PSO) is coupled to identify the parameters of the SMC. Three optimal criteria are used for determining the best sliding mode controller parameters which are later used in estimating the ride comfort and road handling of a semi-active suspension system. A comparison between the SMC, Skyhook, Ground hook and PID controller suggests that the optimal parameters with SMC have better controllability than the PID controller. SMC has also provided better controllability than the PID controller at higher road roughness.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Xuemin Li ◽  
Yufei Liu ◽  
Haoyu Shu ◽  
Runzhi Wang ◽  
Yunlong Yang ◽  
...  

This paper proposes a disturbance observer-based discrete sliding-mode control scheme with the variable sampling rate control for the marine diesel engine speed control in the presence of system uncertainties and disturbances. Initially, a sliding-mode controller based on the fast power reaching law is employed, which has a good dynamic quality of the arrival stage and can suppress chattering. To satisfy the practical requirements in the digital controller and the crank angle-based fuel injection in engine speed control, the proposed method is discretized under the variable sampling rate condition. A disturbance observer based on the second-order sliding-mode control is designed to compensate the system uncertainties and disturbances, by doing such the requirement of the parameters of the sliding-mode controller to be reduced significantly. In addition, a cylinder-by-cylinder mean value engine model (MVEM) is built by restructuring the combustion torque model, based on which numerical simulations are carried out by comparing the proposed method with PID and the extended state observer (ESO)-based sliding mode controllers. The common operation situations of the marine diesel engines are taken into account, including starting process, acceleration and deceleration, load variation, and varied propulsion system parameters. The results demonstrate that the proposed disturbance observer-based sliding-mode controller has prominent control performance and strong robustness.


Author(s):  
Madhavan Sudakar ◽  
Siddharth Sridhar ◽  
Manish Kumar

Abstract In this paper, we present a controller design for a quadrotor by obtaining the derivative of the actual control input using the concept of multiple sliding surfaces and Lyapunov stability analysis. The conventional sliding mode controller is highly robust. The discontinuous part of the control input suppresses disturbances well. Theoretically, however, this discontinuity causes rapid switching of the control input (chattering) which results in large energy consumption and inefficiency. The proposed control method formulates the derivative of control input (having the discontinuity) which upon integrating provides a smoother control input when compared to the classical sliding mode control. The quadrotor with our proposed controller is subjected to varying wind disturbance scenarios and its performance is bench-marked against a PID controller and a conventional sliding mode controller. A saturation function sat is used instead of the sign for the classical sliding mode controller as well as the the proposed novel controller design in all sections from 4.2. The reasoning behind this is discussed in the results section of the paper.


Author(s):  
A Tony Thomas ◽  
R Parameshwaran ◽  
S Sathiyavathi ◽  
A Vimala Starbino

Electro Hydraulic Servo Systems (EHSS) offer fast response in different industrial aspects such as heavy machines, cranes and robots. To obtain a precise piston profile and to achieve the designed speed, a Sliding Mode Controller (SMC) for the duration of piston extension and retraction is presented in this paper. The novelty lies in the development of a practical profile connecting the system supply pressure dynamics to the duration of piston extension and retraction. Based on the curve fitting technique, a quadratic profile is designed for a practical hydraulic press. The Sliding Mode Controller is employed to achieve repeatable tracking of the profile generated with guaranteed soft seating velocity, thereby increasing the lifetime of the hydraulic press. The performance of the proposed controller is compared with the baseline Proportional Integral Derivative (PID) controller with square wave as well as exponential wave tracking tests in simulation and experimentation which confirm the effectiveness of the proposed control scheme.


2017 ◽  
Vol 1 (1) ◽  
pp. 80
Author(s):  
Thien Bao Tat Nguyen

In this paper, we have discussed the synchronization between coupled Josephson Junctions which experience different chaotic oscillations. Due to potential high-frequency applications, the shunted nonlinear resistive-capacitive-inductance junction (RCLSJ) model of Josephson junction was considered in this paper. In order to obtain the synchronization, an adaptive MIMO controller is developed to drive the states of the slave chaotic junction to follow the states of the master chaotic junction. The developed controller has two parts: the fuzzy neural controller and the sliding mode controller. The fuzzy neural controller employs a fuzzy neural network to simulate the behavior of the ideal feedback linearization controller, while the sliding mode controller is used to ensure the robustness of the controlled system and reduce the undesired effects of the estimate errors. In addition, the Lyapunov candidate function is also given for further stability analysis. The numerical simulations are carried out to verify the validity of the proposed control approach. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Author(s):  
Mustefa Jibril ◽  
Messay Tadese ◽  
Reta Degefa

In this paper, a two-link manipulator system stability performance is designed and analyzed using Optimal control technique. The manipulator system is highly nonlinear and unstable. The system is modelled using Lagrangian equation and linearized in upward unstable position. The closed loop system is designed using optimal sliding mode controller. The system is compared with a known PID controller with an impulse applied and disturbance torques and a promising results has been obtained.


Sign in / Sign up

Export Citation Format

Share Document