scholarly journals Rancang Bangun Sistem Monitoring Kelembaban Tanah Menggunakan Wireless Sensor Berbasis Arduino Uno

2016 ◽  
Vol 5 (4) ◽  
pp. 327-333 ◽  
Author(s):  
Putri Asriya ◽  
Meqorry Yusfi

Telah dilakukan rancang bangun sistem monitoring kelembaban tanah menggunakan wireless sensor berbasis Arduino Uno. Rancangan perangkat keras sistem ini terdiri dari satu unit transmitter yang dilengkapi oleh sensor soil moisture SEN0114 V2 dan satu unit receiver. Semua unit dikendalikan dengan menggunakan Arduino Uno. Data kelembaban tanah dikirim oleh unit transmitter  ke unit receiver menggunakan transceiver nRF24L01+ yang memanfaatkan gelombang radio sebagai media pengiriman. Hasil deteksi nilai kelembaban tanah pada sensor ditampilkan oleh LCD 2x16 karakter. Hasil pengujian sensor kelembaban tanah meperlihatkan bahwa hubungan antara tegangan keluaran sensor dengan kelembaban tanah pada moisture meter adalah linear dengan nilai regresi sebesar 0,9758. Berdasarkan pengujian transceiver, jarak terjauh pengiriman data yang dapat diterima oleh receiver di luar ruangan tanpa ada penghalang adalah 200,1 m. Pada pengujian variasi sudut pengiriman, data dapat diterima oleh unit receiver pada sudut ³ 26,56⁰. Apabila sudut lebih kecil dari 26,56⁰ data masih dapat diterima dengan adanya delay hingga sudut 11,31⁰.Kata kunci: sensor soil moisture, kelembaban tanah, wireless, gelombang radio, nRF24L01+ 

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3450 ◽  
Author(s):  
Haider Jawad ◽  
Rosdiadee Nordin ◽  
Sadik Gharghan ◽  
Aqeel Jawad ◽  
Mahamod Ismail ◽  
...  

The use of wireless sensor networks (WSNs) in modern precision agriculture to monitor climate conditions and to provide agriculturalists with a considerable amount of useful information is currently being widely considered. However, WSNs exhibit several limitations when deployed in real-world applications. One of the challenges faced by WSNs is prolonging the life of sensor nodes. This challenge is the primary motivation for this work, in which we aim to further minimize the energy consumption of a wireless agriculture system (WAS), which includes air temperature, air humidity, and soil moisture. Two power reduction schemes are proposed to decrease the power consumption of the sensor and router nodes. First, a sleep/wake scheme based on duty cycling is presented. Second, the sleep/wake scheme is merged with redundant data about soil moisture, thereby resulting in a new algorithm called sleep/wake on redundant data (SWORD). SWORD can minimize the power consumption and data communication of the sensor node. A 12 V/5 W solar cell is embedded into the WAS to sustain its operation. Results show that the power consumption of the sensor and router nodes is minimized and power savings are improved by the sleep/wake scheme. The power consumption of the sensor and router nodes is improved by 99.48% relative to that in traditional operation when the SWORD algorithm is applied. In addition, data communication in the SWORD algorithm is minimized by 86.45% relative to that in the sleep/wake scheme. The comparison results indicate that the proposed algorithms outperform power reduction techniques proposed in other studies. The average current consumptions of the sensor nodes in the sleep/wake scheme and the SWORD algorithm are 0.731 mA and 0.1 mA, respectively.


1935 ◽  
Vol 25 (3) ◽  
pp. 326-343 ◽  
Author(s):  
W. S. Rogers

1. A soil moisture meter which gives direct and continuous measurement of the soil moisture content is described. The instrument consists of a special porous pot filled with water, connected by a tube to a mercury manometer. The pot is buried in the soil, whose capillary pull causes the mercury to rise. The height to which the mercury rises depends on the amount of moisture in the soil, and also on the size of soil particles and the degree of compactness of the soil. (The last two factors remain constant for an instrument in one position.)2. To read actual moisture percentage each instrument has to be calibrated for the soil in which it is placed. Once this is done, all sampling and weighing is eliminated.


2020 ◽  
Vol 1 (1) ◽  
pp. 23-32
Author(s):  
Sampurna Dadi Riskiono ◽  
Roy Harry Syidiq Pamungkas ◽  
Yudha Arya

Development at this time is increasing, people expect a tool or technology that can help human work, so technology becomes a necessity for humans. This final task is made a device that can do the job of watering tomato plants automatically. This tool aims to replace the manual work becomes automatic. The benefit of this tool is that it can facilitate the work of humans in watering chili plants. This tool uses a soil moisture sensor which acts as a soil moisture detector and sends an order to Arduino Uno to turn on the relay driver so that the wiper motor can splash water according to the needs of the soil automatically. The making of this final project is done by designing, making and implementing system components which include Arduino uno as a controller, driver relay to blow on and off the wiper motor, LCD (Linquit Cristal Display) to display the percentage value of water content


Author(s):  
Ortega-Corral César ◽  
B. Ricardo Eaton-González ◽  
Florencio López Cruz ◽  
Laura Rocío, Díaz-Santana Rocha

We present a wireless system applied to precision agriculture, made up of sensor nodes that measure soil moisture at different depths, applied to vine crops where drip irrigation is applied. The intention is to prepare a system for scaling, and to create a Wireless Sensor Network (WSN) that communicates by radio frequency with a base station (ET), so that the gathered data is stored locally and can be sent out an Internet gateway.


2020 ◽  
pp. 945-958
Author(s):  
Santosh R. Durugkar ◽  
Ramesh C. Poonia ◽  
Radhakrishna B. Naik

The proposed system focuses on utilizing the available water for a home garden in an effective way. The same approach is applicable to agriculture (large field), as our country's economy depends up on the agriculture. Therefore, agriculture is the backbone of Indian economy. In this paper, the authors have proposed a novel approach priority driven scheduling based irrigation model (for home garden) which supplies optimum and good quality water to the crops. The most important part for such system is Wireless Sensor Network which irrigates the plants. The proposed system will be very useful as it immediately irrigates the plant. In this process, soil moisture values will be sensed and compared to find out the lowest value. It means water will be given immediately to such plants where moisture values are low. Such systems will start new era in agriculture and will prove itself as a major requirement in the future due to many critical factors such as irregularity of monsoon, less availability of water, etc.


2017 ◽  
Vol 19 (4) ◽  
pp. 37-48 ◽  
Author(s):  
Santosh R. Durugkar ◽  
Ramesh C. Poonia ◽  
Radhakrishna B. Naik

The proposed system focuses on utilizing the available water for a home garden in an effective way. The same approach is applicable to agriculture (large field), as our country's economy depends up on the agriculture. Therefore, agriculture is the backbone of Indian economy. In this paper, the authors have proposed a novel approach priority driven scheduling based irrigation model (for home garden) which supplies optimum and good quality water to the crops. The most important part for such system is Wireless Sensor Network which irrigates the plants. The proposed system will be very useful as it immediately irrigates the plant. In this process, soil moisture values will be sensed and compared to find out the lowest value. It means water will be given immediately to such plants where moisture values are low. Such systems will start new era in agriculture and will prove itself as a major requirement in the future due to many critical factors such as irregularity of monsoon, less availability of water, etc.


Sign in / Sign up

Export Citation Format

Share Document