scholarly journals PRODUCTION OF INDUSTRIALLY IMPORTANT ENZYMES BY THERMOBACILLI ISOLATED FROM HOT SPRINGS OF INDIA

2017 ◽  
Vol 8 ◽  
pp. 19-28
Author(s):  
ASHISH DHYANI ◽  
RITU GURURANI ◽  
SAMY A. SELIM ◽  
PRIYANKA ADHIKARI ◽  
AVINASH SHARMA ◽  
...  

Enzymes from thermophilic bacteria have received great attention for their potential applications in various industrial sectors. The present study deals with the production of five thermozymes (amylase, lipase, xylanase, protease and cellulase) from 10 thermophilic bacterial species, originally isolated from two hot springs namely Soldhar and Ringigad in Uttarakhand Himalaya, India. The bacterial isolate GBPI_25 produced maximum amylase (1217.86 U/ml) at 45 °C and 5 pH, GBPI 3 produced maximum lipase (22.59 U/ml) at 65 °C and 9 pH, GBPI_25 produced maximum xylanase (98.07 U/ml) at45 °C and 9 pH, GBPI_35 produced maximum protease (16.66 U/ml) at 55 °C and 9 pH, and GBPI 4 produced maximum cellulose (108.68 U/ml) at 45 °C and 5 pH. Crude enzyme preparations showed thermal and pH activities at broad temperature and pH range between 10-100 °C and 3-11 pH, respectively, with different temperature and pH optima. Amylase, xylanase and cellulase showed maximum activity at 50 °C while lipase and protease showed higher activity at 40 and 60 °C, respectively. Enzyme activity at wide temperature range-cellulase and protease from 10-100 °C, amylase and xylanasefrom10-90 °C, and lipase activity from 10-80 °C were the remarkable records from this study. Similarly, pH range for amylase and lipase activity was recorded from 4-11, for xylanase from 3-9, and for protease and cellulase from 3-10. All the thermozymes showed maximum stability at 40 °C and pH 5 except cellulase that showed higher stability at40 °C and neutral pH.

Microbiology ◽  
2020 ◽  
Vol 166 (9) ◽  
pp. 800-816
Author(s):  
Ishfaq Nabi Najar ◽  
Nagendra Thakur

The genus Geobacillus , belonging to the phylum Firmicutes, is one of the most important genera and comprises thermophilic bacteria. The genus Geobacillus was erected with the taxonomic reclassification of various Bacillus species. Taxonomic studies of Geobacillus remain in progress. However, there is no comprehensive review of the characteristic features, taxonomic status and study of various applications of this interesting genus. The main aim of this review is to give a comprehensive account of the genus Geobacillus . At present the genus acomprises 25 taxa, 14 validly published (with correct name), nine validly published (with synonyms) and two not validly published species. We describe only validly published species of the genera Geobacillus and Parageobacillus . Vegetative cells of Geobacillus species are Gram-strain-positive or -variable, rod-shaped, motile, endospore-forming, aerobic or facultatively anaerobic, obligately thermophilic and chemo-organotrophic. Growth occurs in the pH range 6.08.5 and a temperature of 37–75 °C. The major cellular fatty acids are iso-C15:o, iso-C16:0 and iso-C17:o. The main menaquinone type is MK-7. The G­+C content of the DNA ranges between 48.2 and 58 mol%. The genus Geobacillus is widely distributed in nature, being mostly found in many extreme locations such as hot springs, hydrothermal vents, marine trenches, hay composts, etc. Geobacillus species have been widely exploited in various industrial and biotechnological applications, and thus are promising candidates for further studies in the future.


2014 ◽  
Vol 65 (2) ◽  
pp. 809-816 ◽  
Author(s):  
Anita Pandey ◽  
Kusum Dhakar ◽  
Avinash Sharma ◽  
Payal Priti ◽  
Priyanka Sati ◽  
...  

2021 ◽  
Vol 22 (6) ◽  
pp. 2861
Author(s):  
Colleen Varaidzo Manyumwa ◽  
Özlem Tastan Bishop

Carbonic anhydrases (CAs) have been identified as ideal catalysts for CO2 sequestration. Here, we report the sequence and structural analyses as well as the molecular dynamics (MD) simulations of four γ-CAs from thermophilic bacteria. Three of these, Persephonella marina, Persephonella hydrogeniphila, and Thermosulfidibacter takaii originate from hydrothermal vents and one, Thermus thermophilus HB8, from hot springs. Protein sequences were retrieved and aligned with previously characterized γ-CAs, revealing differences in the catalytic pocket residues. Further analysis of the structures following homology modeling revealed a hydrophobic patch in the catalytic pocket, presumed important for CO2 binding. Monitoring of proton shuttling residue His69 (P. marina γ-CA numbering) during MD simulations of P. hydrogeniphila and P. marina’s γ-CAs (γ-PhCA and γ-PmCA), showed a different behavior to that observed in the γ-CA of Escherichia coli, which periodically coordinates Zn2+. This work also involved the search for hotspot residues that contribute to interface stability. Some of these residues were further identified as key in protein communication via betweenness centrality metric of dynamic residue network analysis. T. takaii’s γ-CA showed marginally lower thermostability compared to the other three γ-CA proteins with an increase in conformations visited at high temperatures being observed. Hydrogen bond analysis revealed important interactions, some unique and others common in all γ-CAs, which contribute to interface formation and thermostability. The seemingly thermostable γ-CA from T. thermophilus strangely showed increased unsynchronized residue motions at 423 K. γ-PhCA and γ-PmCA were, however, preliminarily considered suitable as prospective thermostable CO2 sequestration agents.


1993 ◽  
Vol 15 (4) ◽  
pp. 361-366 ◽  
Author(s):  
Sj�fn Sigurg�slad�ttir ◽  
Malta Konr��sd�ttir ◽  
�sbj�rn J�nsson ◽  
Jakob K. Kristj�nsson ◽  
Einar Matthiasson

2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Mariko Takano ◽  
Masaya Nakamura ◽  
Masanobu Tabata

AbstractWe performed an analysis using isoelectric focusing to comprehensively clarify the isozyme composition of laccase derived from Japanese lacquer tree, Toxicodendron vernicifluum. When water extracts of acetone powder obtained from lacquer were subjected to isoelectric focusing, five bands within pI 7.35–9.30 and nine bands within pI 3.50–5.25 were detected using Coomassie staining. Similarly, laccase activity staining using guaiacol showed five bands within pI 7.35–9.30 and three bands within pI 3.50–4.25. However, laccase activity staining using gallic acid showed remarkable staining within pI 3.50–5.85, whereas staining was very weak within pI 7.35–9.30. When the water extracts of acetone powder were fractionated into the fractions containing bands within pI 7.35–9.30 and pI 3.50–5.85 by SP-Sepharose column chromatography, the former had a blue color and the latter a yellow color. The laccase activity was measured for each of the fractions in buffer solution in the pH range of 2.5–8.0. When syringaldazine, guaiacol, and 2,6-dimethoxyphenol were used as substrates, the yellow fraction showed considerably higher activity than the blue fraction for pH 5.5–7.5. When 3-methylcatechol and 4-methylcatechol were used as substrates, the yellow fraction showed higher activity for pH 4.5–6.5, and the blue fraction showed higher activity for pH 7.0–8.0. When 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) was used as the substrate, both fractions showed maximum activity at optimum pH of 3.0–4.0. Conventionally, in research on blue laccase derived from lacquer, the non-blue fraction corresponding to the yellow fraction lower than pI 6 has been removed during the purification process and thus has not been analyzed. Our results indicated that yellow laccase was present in the non-blue components of lacquer and that it may play a role in urushiol polymerization with previously reported blue laccase.


1972 ◽  
Vol 50 (5) ◽  
pp. 447-456 ◽  
Author(s):  
C. De Luca ◽  
R. P. Gioeli

Preparations from cells cultured from a minimal-deviation hepatoma in the rat exhibit pyridine nucleotide transhydrogenase (NAD(P)H: NAD(P) oxidoreductase, EC 1.6.1.1) activity. The pH optimum, its release by digitonin, and its apparent lack of dependence on steroids for activity tentatively classify it as a transhydrogenase of the type first described for animal tissue.Enzyme preparations from digitonin-treated homogenates were very unstable. The time necessary for the loss of one-half the activity was 16–18 h when the enzyme was stored at 5 °C; this was reduced to 4 h when storage was in polycarbonate tubes.The enzyme apparently transferred hydrogen directly and with equal ease from NADH to both the 3-acetyl-pyridine and thionicotinamide analogues of NAD. Half-saturation values for NAD and its acetylpyridine analogue were 0.99 × 10−5 M and 3.55 × 10−4 M, respectively. The enzyme exhibited its maximum activity in phosphate buffer at pH 5.8. It was inhibited by 50–60% over the pH range 7.0–8.5 in Tris buffer. This could be reversed by dithiothreitol; reversal was complete between pH 8.0 and 8.5.


2011 ◽  
Vol 22 ◽  
pp. S88
Author(s):  
Kadriye İnan ◽  
Müslüm Tokgöz ◽  
Sabriye Çanakçi ◽  
Ali Osman Beldüz

2018 ◽  
Vol 44 (1) ◽  
pp. 75-85
Author(s):  
S. A. Alrumman ◽  
Y. S. Mostafa ◽  
Shekha T. S. Al-Qahtani ◽  
T. Sahlabji ◽  
T. H. Taha

2016 ◽  
Vol 72 (5) ◽  
pp. 373-378 ◽  
Author(s):  
Feng-Lan Liang ◽  
De-Yun Ma ◽  
Liang Qin

Metal–organic frameworks (MOFs) are a new class of porous materials that have received widespread attention due to their potential applications in gas storage and/or separation, catalysis, luminescence, and so on. The title compound, poly[[(μ2-3,3′-dimethyl-4,4′-bipyridine-κ2N:N′)bis(μ4-4,4′-oxydibenzoato-κ4O:O′:O′′:O′′′)dizinc] tetrahydrate], {[Zn2(C14H8O5)2(C12H12N2)]·4H2O}n, has been prepared by the solvothermal assembly of Zn(NO3)2·6H2O, 4,4′-oxydi(benzoic acid) and 3,3′-dimethyl-4,4′-bipyridine. The two ZnIIatoms adopt the same five-coordinated distorted square-pyramidal geometry (i.e.ZnO4N), bonding to four O atoms from four different 4,4′-oxydibenzoate (oba) ligands and one N atom from a 3,3′-dimethyl-4,4′-bipyridine (dmbpy) ligand. The supramolecular secondary building unit (SBU) is a paddle-wheel [Zn2(COO)4] unit and these units are linked by oba ligands within the layer to form a two-dimensional net parallel to thebaxis, with the dmbpy ligands pointing alternately up and down, which is further extended by dmbpy ligands to form a three-dimensional framework withrobtopology. The single net leaves voids that are filled by mutual interpenetration of an independent equivalent framework in a twofold interpenetrating architecture. The title compound shows thermal stability up to 673 K and is stable in aqueous solutions in the pH range 5–9. Excitation and luminescence data observed at room temperature show that it emits a bright-blue fluorescence.


Sign in / Sign up

Export Citation Format

Share Document