scholarly journals Effect of SiO2 ratio on electrical Properties of SiO2:ZnO Thin Films Prepared by pulsed laser depositions (PLD) technique

2019 ◽  
Vol 23 (10) ◽  
pp. 76
Author(s):  
Abdul-Majeed E. Al-Samarai1 ◽  
Zuheer. N. Majeed1 ◽  
Ghuson. H.Mohammed2

In this paper zinc oxide was dopped by various concentrations (5,10,15,20,25) % of silicon dioxide. The mixture was deposited on glass substrate by laser pulse deposition at room temperature to obtain (Zn2SiO4) thin films. The D.C conductivity showed a decrease in activation energy by increasing doping from (Ea1=0.096 eV) to (Ea1=0.075 eV) before annealing and after annealing from (Ea1=0.048 eV) to(Ea1=0.027 eV). Hall effect showed that the concentration of carriers increases from (2.79 ×1018cm-3) to (14.29× 1018cm-3 ) before annealing and from (0.30×1016cm-3) to (26.25×1016cm-3) after annealing. The mobility decreases from(2.3cm2/v. sec) to (0.99cm2/v. sec) before annealing and from (7cm2/v. sec) to (2.5cm2/v . sec).   http://dx.doi.org/10.25130/tjps.23.2018.173  

2019 ◽  
Vol 14 (29) ◽  
pp. 37-43 ◽  
Author(s):  
Raied K. Jamal

The electrical properties of pure NiO and NiO:Au Films which aredeposited on glass substrate with various dopant concentrations(1wt.%, 2wt%, 3wt.% and 4wt.%) at room temperature 450 Coannealing temperature will be presented. The results of the hall effectshowed that all the films were p-type. The Hall mobility decreaseswhile both carrier concentration and conductivity increases with theincreasing of annealing temperatures and doping percentage, Thus,indicating the behavior of semiconductor, and also the D.Cconductivity from which the activation energy decrease with thedoping concentration increase and transport mechanism of the chargecarriers can be estimated.


2008 ◽  
Vol 202 (22-23) ◽  
pp. 5467-5470 ◽  
Author(s):  
Norihiro Sakai ◽  
Yoshihiro Umeda ◽  
Fumiaki Mitsugi ◽  
Tomoaki Ikegami

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
M. Acosta ◽  
I. Riech ◽  
E. Martín-Tovar

Zinc oxide (ZnO) thin films were grown by nonreactive RF sputtering at room temperature under varying argon pressures (PAr). Their optical band gap was found to increase from 3.58 to 4.34 eV when the argon pressure increases from 2.67 to 10.66 Pa. After annealing at 200°C and 500°C, optical band gaps decrease considerably. The observed widening of the band gap with increasingPArcan be understood as being a consequence of the poorer crystallinity of films grown at higher pressures. Measurements of morphological and electrical properties of these films correlate well with this picture. Our main aim is to understand the effects ofPAron several physical properties of the films, and most importantly on its optical band gap.


2012 ◽  
Vol 259 ◽  
pp. 806-810 ◽  
Author(s):  
D. Padilla-Rueda ◽  
J.M. Vadillo ◽  
J.J. Laserna

Sign in / Sign up

Export Citation Format

Share Document