scholarly journals Deterministic Extensional Viscosity and Cracking Index of Polypropylene-Modified-Asphalt Binder

2020 ◽  
Vol 27 (1) ◽  
pp. 25-29
Author(s):  
Abdul-Rahim Al-Hadidy ◽  
Zeena Al-Kazzaz ◽  
Ahmed Ali

The extensional viscosity and cracking prospectus of polypropylene modified asphalt cement (PPMAC) was explored. Forty/fifty penetration class asphalt cement with fivecontents of polypropylene polymer were chosen. Conventional traits such as: Standard penetration, standard softening point, ductility, utter viscosity, elasticity moduli, penetration prospectus, ageing, cracking prospectus, homogeneity, and extensional viscosity were performed on PPMAC. The PPMAC shows better viscosity, elasticity, enduringness and lower cracking properties at cold regions

2016 ◽  
Vol 78 (4) ◽  
Author(s):  
Shaban Imael Albrka Ali ◽  
Amiruddin Ismail ◽  
Nur Izzi Md. Yusoff ◽  
Norhidayah Abdul Hassan ◽  
Ahmad Nazrul Hakimi Ibrahim

This study investigates the physical and rheological properties of asphalt binders modified by nano aluminum oxide (AL2O3). Several conventional tests were conducted, including penetration, softening point and ductility, rotational viscosity and dynamic shear rheometer (DSR). Based on the results of the tests, it was found that the hardness of modified asphalt binders increased with the addition of nano AL2O3 up to 5%. As a result of the increased hardness, the softening point of modified asphalt improved compared with base asphalt binders. The rheological property of modified binders was enhanced at low and high temperatures. The results of a DSR test revealed that the G* were improved, whereas the δ decreased slightly. The addition of a different percentage of AL2O3 to base binder had a remarkable influence on resistance to permanent deformation (high temperature rutting and low temperature fatigue). Results recognize 5 wt.% as the optimum content of the modifier. Therefore, nano AL2O3 can be considered as a proper alternative additive to modify the properties of asphalt cement.


2016 ◽  
Vol 78 (7-3) ◽  
Author(s):  
Rosnawati Buhari ◽  
Nur Fareesya Zabidi ◽  
Mohd Ezree Abdullah ◽  
Siti Khatijah Abu Bakar ◽  
Nurul Hidayah Mohd Kamarudin

The objectives of this study were to determine the blending parameters of coconut shell powder (CSP) modified asphalt binder and to evaluate the rheological properties of CSP modified asphalt binder. CSP of 2%, 4%, 6%, 8% and 10% by weight of asphalt have been incorporated into an unaged 80/100 asphalt mix in order to improve its performance. The influence of the additives on the physical and rheological properties was evaluated with penetration test, softening point, storage stability, dynamic shear rheometer test (DSR), and Field Emission Scanning Electron Microscope (FESEM). The aging of asphalt binders was simulated in a laboratory by using Rotational Thin Film Oven (RTFO). The results showed that the addition of CSP into virgin binder was decreasing the penetration value and increasing the softening point temperature compared to the original binder. On the rheological effect, for unaged modified binder, higher CSP resulted higher G*/sin δ especially at lower temperature compared to the unaged control binder. Besides, for the aged modified binder, stiffness was lower than the control aged binder for all temperature.


2011 ◽  
Vol 71-78 ◽  
pp. 1062-1067 ◽  
Author(s):  
Zhen Gang Feng ◽  
Jian Ying Yu ◽  
Heng Long Zhang ◽  
Dong Liang Kuang

The modified asphalt binders with various anti-ageing additives, including ultraviolet (UV) absorber, antioxidant and combination of them, were prepared, and the effects of UV absorber contents, antioxidant contents and combination of UV absorber and antioxidant on physical properties and ageing characteristics of the asphalt binder were investigated. Results show that the ductility of asphalt binder increases whereas the softening point and viscosity decrease with addition of anti-ageing additives. UV absorbers and antioxidants exhibit different influences on the ageing properties of asphalt binder. The thermal- and photo-oxidative ageing performance of asphalt binder can be simultaneously improved by the compound modification with UV absorber and antioxidant. The combination of UV326 and antioxidant 1010 shows synergistic effect in preventing the asphalt binder from thermal- and photo-oxidative ageing, which contributes to excellent ageing resistance of modified asphalt binder.


2015 ◽  
Vol 75 (11) ◽  
Author(s):  
Md. Maniruzzaman A. Aziz ◽  
Ahmed Wsoo Hamad ◽  
Abdulmalik Musa Maleka ◽  
Fauzan Mohd Jakarni

This paper dealt with the viscoelastic behavior of Cellulose Oil Palm Fiber (COPF) modified 60-70 penetration grade asphalt binder for the deterioration of roads. The main objective of this study was to investigate the effect of various COPF contents on the physical and the rheological properties of penetration grade 60-70 asphalt binder. Laboratory tests performed comprised of viscosity, penetration, softening point, short & long term ageing, as well as complex shear modulus (G*).  The COPF was blended in 0.2, 0.4, 0.6, 0.8, and 1.0% by weight of asphalt binder, including 0% as control. The COPF modified asphalt binder showed an increasing viscosity and softening point with the increase of COPF content, whereas the penetration decreased as the COPF was increased for the binder. The complex shear modulus (G*), rutting factor (G*/sin δ), and fatigue factor (G*sin δ) showed significant improvement for the modified samples compared to the unmodified samples. The results indicated that the COPF modified asphalt binder had high potential to resist permanent (rutting) deformation and fatigue cracking than the unmodified sample. 


2015 ◽  
Vol 76 (9) ◽  
Author(s):  
E. Shaffie ◽  
J. Ahmad ◽  
A. K. Arshad ◽  
D. Kamarun

In this paper, the effects of nanopolyacrylate (NP) in binder modification on the empirical and rheological characteristics of the conventional binder were explored. The empirical and rheological binder properties were characterized using penetration, softening point, viscosity and dynamic shear rheometer (DSR) respectively.  These testings have become useful methods in characterizing of the binder performance on the pavement. The results indicated that NP polymer modification improved the physical properties of the conventional binder such as; penetration, softening point and temperature susceptibility. The results of viscosity test show that the NP polymer modified binder is more viscous than unmodified binder where viscosity increases with the increment of polymer content. The DSR results indicate that the NP polymer improves rheological properties of conventional binder, i.e. increasing the complex shear modulus (G∗) values and rutting parameters (G∗/sin δ), as well as decreasing the phase angle (δ) values. Therefore, it can be concluded that NP polymers considerably improves elastic properties and rutting resistance of binder and thus could be used for enhancing the asphalt pavement performance.


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2014 ◽  
Author(s):  
Juan Xie ◽  
Yueming Yang ◽  
Songtao Lv ◽  
Xinghai Peng ◽  
Yongning Zhang

According to the theory of molecular design, crumb rubber was grafting activated with acrylamide and then used as asphalt binder modifier. An orthogonal three-factor, three-level test was designed to optimize the preparation process of modified asphalt. Softening point, viscosity, rutting factor, ductility, stiffness modulus and creep speed index were selected as evaluation indicators to study the effects of rubber content, shear time and shear temperature by variance analysis and range analysis. The results show that the rubber content had a significant impact on the performance of modified asphalt with grafting-activated crumb rubber, while the shear temperature and shear time had little effect. The grafting activated crumb rubber content of 20%, shear temperature of 170–190 °C, and shear time of 90 min was determined as the reasonable preparation process. Modified asphalt with common crumb rubber (CRMA) and modified asphalt with grafting activated crumb rubber (A-G-R) were prepared, respectively, using the reasonable process to analyze the influence of grafting activation of crumb rubber. The results indicate that A-G-R had smaller softening point difference, lower segregation index and more stable and uniform dispersed phase.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Zhen Lu ◽  
Aimin Sha ◽  
Wentong Wang ◽  
Junfeng Gao

Sustainable materials in the field of road pavement have become a research direction in recent years. In this study, the rice husk ash with small dosage of styrene-butadiene-styrene (SBS) was added as a bioadditive into the base asphalt to modify its properties. Different contents (0, 2, 5, 10, and 15%) of rice husk ash (RHA) and 1% of SBS were selected to prepare the modified asphalt. Penetration, softening point, ductility, rotational viscosity test, and temperature sweep test were conducted to investigate the properties of SBS/RHA-modified asphalt binder. Rutting test, moisture susceptibility, and low-temperature cracking were utilized to evaluate the performances of SBS/RHA-modified asphalt mixture. The results showed that the penetration decreased and the softening point and rotational viscosity enhanced while the ductility slightly decreased with the incorporation of rice husk ash. The SBS/RHA-modified asphalt mixture had better high-temperature performance than that of the virgin asphalt mixture but slightly lower moisture stability and low temperature performance. The tensile strength ratio of the virgin and modified asphalt mixture met the requirement of specification. The tensile strain of mixture SR15 was lower than the requirement for the asphalt mixtures on the basis of the specification. For the SBS/RHA-modified asphalt binder based on the comprehensive properties, the content of rice husk ash should not be higher than 15%.


Bitumen modification is done to enhance the properties of bitumen related to elasticity, temperature susceptibility, softening point etc. This research intends to assess the effects of natural rubber latex (NRL) in liquid form as a bitumen modifier. Conventional tests, temperature susceptibility and phase separation due to hot storage were investigated using two separate mixing speeds of 1200 and 1300 revolution per minutes (rev/min). Morphology due to the addition of NRL has also been explored utilizing Atomic Force Microscopy (AFM). NRL was incorporated into the bitumen by weight of the binder for the modification at three different amounts (i.e. 3%, 5% and 6%). Based on the softening point, penetration value, temperature susceptibility and storage stability the latex-modified asphalt binder were analyzed. Results of the investigation showed that owing to enhancement in viscoelastic properties, the latex-modified asphalt binder will not undergo phase separation during hot temperature storage. Meanwhile, a uniform dispersed network was indicated by the morphological analysis with the presence of three phases of para, peri and cata. It can be deduced from the results obtained that the latex-modified asphalt binders will perform better in terms of softening point, penetration value and susceptibility due to temperature.


Sign in / Sign up

Export Citation Format

Share Document