Physics-Based Trim Optimization of an Articulated Slowed-Rotor Compound Helicopter in High-Speed Flight

2015 ◽  
Vol 52 (6) ◽  
pp. 1756-1766 ◽  
Author(s):  
Jean-Paul Reddinger ◽  
Farhan Gandhi
2020 ◽  
Vol 65 (1) ◽  
pp. 1-19
Author(s):  
Djamel Rezgui ◽  
Mark H. Lowenberg

Despite current research advances in aircraft dynamics and increased interest in the slowed rotor concept for high-speed compound helicopters, the stability of autogyro rotors remains partially understood, particularly at lightly loaded conditions and high advance ratios. In autorotation, the periodic behavior of a rotor blade is a complex nonlinear phenomenon, further complicated by the fact that the rotor speed is not held constant. The aim of the analysis presented in this article is to investigate the underlying mechanisms that can lead to rotation-flap blade instability at high advance ratios for a teetering autorotating rotor. The stability analysis was conducted via wind tunnel tests of a scaled autogyro model combined with numerical continuation and bifurcation analysis. The investigation assessed the effect of varying the flow speed, blade pitch angle, and rotor shaft tilt relative to the flow on the rotor performance and blade stability. The results revealed that rotor instability in autorotation is associated with the existence of fold bifurcations, which bound the control-input and design parameter space within which the rotor can autorotate. This instability occurs at a lightly loaded condition and at advance ratios close to 1 for the scaled model. Finally, it was also revealed that the rotor inability to autorotate was driven by blade stall.


2021 ◽  
Vol 69 (6) ◽  
pp. 257-261
Author(s):  
Noboru Kobiki ◽  
Yasutada Tanabe ◽  
Hideaki Sugawara ◽  
Keita Kimura ◽  
Masahiko Sugiura

2020 ◽  
Vol 65 (1) ◽  
pp. 1-13
Author(s):  
Xing Wang ◽  
Lauren Trollinger ◽  
Inderjit Chopra

Owing to its ability to alleviate the compressibility effect on the advancing side, the slowed rotor operating at high advance ratios is a key feature in high-speed compound rotorcraft. A series of wind tunnel tests were conducted in the Glenn L. Martin Wind Tunnel with a four-bladed Mach-scaled articulated rotor. The objective of the tests was to gain a basic understanding of unique features of high-advance-ratio aerodynamic phenomena, such as thrust reversal and dynamic stall in the reverse flow region. In this study, high-advance-ratio tests were carried out with highly similar, noninstrumented blades and on-hub control angle measurements, to minimize possible error due to blade structural dissimilarity and pitch angle discrepancy. The tests were conducted at 900 and 1200 RPM, advance ratios of 0.3–0.9, and a shaft tilt study was conducted at±4°. Pitch and flap motion at the blade roots, rotor performance, and vibratory hub loads were investigated during the test. The test data were then compared with those of previous tests and with predictions from comprehensive analysis. The airload results were investigated using comprehensive analysis to gain insights into the influences of advance ratio and shaft tilt angle on rotor performance and hub vibratory loads. Results indicate that the thrust benefit from backward shaft tilt is dependent on the change in the inflow condition and the induced angle of attack increment, and the reverse flow region at high advance ratios is the major contributor to changes in shaft torque and horizontal force.


Author(s):  
Ye Yuan ◽  
Douglas Thomson ◽  
Renliang Chen

The coaxial compound configuration has been proposed as a concept for future high-performance rotorcraft. The co-axial rotor system does not require an anti-torque device, and a propeller provides axial thrust. A well-designed control strategy for the propeller is necessary to improve the performance and the flight dynamics characteristics. A flight dynamics model of coaxial compound helicopter is developed to analyze these influences. The performance and the flight dynamics characteristics in different propeller strategies were first investigated. The results show that there is an improvement in the performance in high-speed flight when the propeller provides more propulsive forces. It also illustrates that a reasonable allocation of the rotor and the propeller in providing thrust can further reduce the power consumption in the mid speed range. In other words, the propeller control strategy can be an effective method to improve the cruise-efficiency. The flight dynamics analysis in this paper includes trim and handling qualities. The trim results prove that the propeller strategy can affect the collective pitch, longitudinal cyclic pitch, and the pitch attitude. If the control strategy is designed only to decrease the required power, it will result in a discontinuity in the trim characteristics. Handling qualities are investigated based on the ADS-33E-PRF requirement. The result demonstrates that the bandwidth and phase delay results and eigenvalue results in various speed at different propeller strategies are all satisfied. However, some propeller control strategies lead to severe inter-axis coupling in high-speed flight. Based on these results, this paper proposes the propeller control strategy for the coaxial compound helicopter. This strategy ensures good trim characteristics and handling qualities, which satisfy the related requirements, and improves the flight range or the performance in high-speed flight.


2021 ◽  
Vol 66 (1) ◽  
pp. 1-14
Author(s):  
Constantin Öhrle ◽  
Felix Frey ◽  
Jakob Thiemeier ◽  
Manuel Keßler ◽  
Ewald Krämer ◽  
...  

This work presents the correlation of simulation results and flight-test data for a high-speed (V = 220 kt), high advance ratio (μ > 0.5) flight of the compound helicopter X3. The simulation tool chain consists of state-of-the-art coupling between the computational fluid dynamics (CFD) code FLOWer and the comprehensive analysis tool HOST. By applying a freeflight trim procedure, the experimental flight state is accurately represented in the simulation. The deviations of most trim controls is below 1°, and the maximum deviation is less than 1.4°. The analysis of the high-fidelity CFD results illustrates key features of the flow physics at this high advance ratio, such as wake interactions, reverse flow, and advancing side loading. The correlation of rotor dynamics data between simulation and flight test is favorable. Good accordance is demonstrated for flap bending moments, torsion moments, and pitch link loads. In contrast, the correlation is weaker for the chord bending moments for which it is shown that the interblade damper and drive train model mostly determine the structural loads.


Author(s):  
Jan-Arun Faust ◽  
Yong Su Jung ◽  
James Baeder ◽  
André Bauknecht ◽  
Jürgen Rauleder

Recently, an asymmetric lift-offset compound helicopter has been conceptualized at the University of Maryland with the objective of improving the overall performance of a medium-lift utility helicopter. The investigated form of lift-compounding incorporates an additional stubbed wing attached to the fuselage on the retreating side. This design alleviates rotor lift requirements and generates a roll moment that enables increased thrust potential on the advancing side in high-speed forward flight. In this study, a numerical model was developed based on the corresponding experimental test case. Three-dimensional unsteady Reynolds-averaged Navier–Stokes equations were solved on overset grids with computational fluid dynamics–computational structural dynamics (CFD–CSD) coupling using the in-house CPU–GPU heterogeneous Mercury CFD framework. Simulations were performed at high-speed, high-thrust operating conditions and showed satisfactory agreement with the experimental measurements in terms of the cyclic control angles, rotor thrust, and torque values. CFD results indicated that for an advance ratio of 0.5 with a collective pitch of 10.6°, a vehicle lift-to-equivalent-drag ratio improvement of 47% was attainable using 11% wing-lift offset. The CFD-computed flow fields provide insights into the origin of a reverse flow entry vortex that was observed in particle image velocimetry data, and they characterize the wing–rotor interactional aerodynamics.


2019 ◽  
Vol 64 (3) ◽  
pp. 1-14 ◽  
Author(s):  
Constantin Öhrle ◽  
Felix Frey ◽  
Jakob Thiemeier ◽  
Manuel Keßler ◽  
Ewald Kräamer

In recent years, various helicopter manufacturers increasingly have been focusing on the development of new high-speed rotorcraft configurations, one of them being the compound helicopter RACER (rapid and cost-efficient rotorcraft) of Airbus Helicopters (AH). However, these new configurations encounter new aeromechanic challenges, in terms of aerodynamic interactions, flight mechanics stability, rotor dynamics, or aeroacoustic noise emission, to name only a few. To support AH at the minimization of risk of RACER's first flight, the Institute of Aerodynamics and Gas Dynamics provides high-fidelity coupled and trimmed aerodynamic and aeroacoustic simulations of the complete helicopter by the application of a multidisciplinary tool chain. In its first part, the work focuses on the description of this advanced tool chain and on important features for the analysis of this new configuration. In the second part, exemplary simulation results for a hover and a high-speed cruise flight condition are shown, and the main aerodynamic interactions between the different components are identified. As expected for this configuration, numerous interactions are found for both flight cases, e.g., main rotor–propeller interaction in hover or main rotor–wing interaction in high-speed flight. Finally, aeroacoustic results are shown for hover with a close look at the propellers' contribution.


Sign in / Sign up

Export Citation Format

Share Document