Mean velocity and static pressure distributions of a circular jet

AIAA Journal ◽  
1997 ◽  
Vol 35 ◽  
pp. 196-197
Author(s):  
M. T. Islam ◽  
M. A. T. Ali
AIAA Journal ◽  
1997 ◽  
Vol 35 (1) ◽  
pp. 196-197 ◽  
Author(s):  
M. T. Islam ◽  
M. A. T. Ali

1964 ◽  
Vol 86 (4) ◽  
pp. 797-804 ◽  
Author(s):  
N. A. Chigier ◽  
J. M. Bee´r

The type of double concentric jets considered in this paper consists of a central round air jet surrounded by an annular air jet issuing into stagnant air surroundings. Detailed measurements of the mean velocity and static-pressure distributions have been made in the region close to the exit of the nozzles and the effect of varying the ratio of the velocities in the central and annular jets has been examined.


AIAA Journal ◽  
1985 ◽  
Vol 23 (6) ◽  
pp. 971-973 ◽  
Author(s):  
W. R. Quinn ◽  
A. Pollard ◽  
G. F. Marsters

1964 ◽  
Vol 86 (4) ◽  
pp. 788-796 ◽  
Author(s):  
N. A. Chigier ◽  
J. M. Bee´r

Mean-velocity and static-pressure measurements have been made in a series of swirling air jets issuing from annular and divergent nozzles into stagnant-air surroundings. Swirl was generated by introducing varying proportions of air through tangential ports while the remainder of the air was introduced axially. A region of subatmospheric pressure is set up in the central region of the jets and as soon as the pressure gradients on the axis exceed a certain critical value, reverse flow is set up with an associated internal ring vortex. With increasing degrees of swirl, the angle of spread of the jets is increased and, correspondingly, the decay of the maximum values of axial, tangential, and radial components of velocity along the lengths of the jets is faster. The integrated axial fluxes of linear and angular momenta were shown to be conserved along the length of the jets.


Author(s):  
Ray R. Taghavi ◽  
Wonjin Jin ◽  
Mario A. Medina

A set of experimental analyses was conducted to determine static pressure drops inside non-metallic flexible, spiral wire helix core ducts, with different bent angles. In addition, Computational Fluid Dynamics (CFD) solutions were performed and verified by comparing them to the experimental data. The CFD computations were carried out to produce more systematic pressure drop information through these complex-geometry ducts. The experimental setup was constructed according to ASHRAE Standard 120-1999. Five different bent angles (0, 30, 45, 60, and 90 degrees) were tested at relatively low flow rates (11 to 89 CFM). Also, two different bent radii and duct lengths were tested to study flexible duct geometrical effects on static pressure drops. FLUENT 6.2, using RANS based two equations - RNG k-ε model, was used for the CFD analyses. The experimental and CFD results showed that larger bent angles produced larger static pressure drops in the flexible ducts. CFD analysis data were found to be in relatively good agreement with the experimental results for all bent angle cases. However, the deviations became slightly larger at higher velocity regimes and at the longer test sections. Overall, static pressure drop for longer length cases were approximately 0.01in.H2O higher when compared to shorter cases because of the increase in resistance to the flow. Also, the CFD simulations captured more pronounced static pressure drops that were produced along the sharper turns. The stronger secondary flows, which resulted from higher and lower static pressure distributions in the outer and inner surfaces, respectively, contributed to these higher pressure drops.


1957 ◽  
Vol 3 (1) ◽  
pp. 1-16 ◽  
Author(s):  
David R. Miller ◽  
Edward W. Comings

Measurements of mean velocity, turbulent stress and static pressure were made in the mixing region of a jet of air issuing from a slot nozzle into still air. The velocity was low and the two-dimensional flow was effectively incompressible. The results are examined in terms of the unsimplified equations of fluid motion, and comparisons are drawn with the common assumptions and simplifications of free jet theory. Appreciable deviations from isobaric conditions exist and the deviations are closely related to the local turbulent stresses. Negative static pressures were encountered everywhere in the mixing field except in the potential wedge region immediately adjacent to the nozzle. Lateral profiles of mean longitudinal velocity conformed closely to an error curve at all stations further than 7 slot widths from the nozzle mouth. An asymptotic approach to complete self-preservation of the flow was observed.


1963 ◽  
Vol 16 (4) ◽  
pp. 620-632 ◽  
Author(s):  
D. J. Maull ◽  
L. F. East

The flow inside rectangular and other cavities in a wall has been investigated at low subsonic velocities using oil flow and surface static-pressure distributions. Evidence has been found of regular three-dimensional flows in cavities with large span-to-chord ratios which would normally be considered to have two-dimensional flow near their centre-lines. The dependence of the steadiness of the flow upon the cavity's span as well as its chord and depth has also been observed.


1997 ◽  
Vol 119 (3) ◽  
pp. 568-573 ◽  
Author(s):  
P. M. Ligrani ◽  
R. Gong ◽  
J. M. Cuthrell

Experimental results are presented that describe the effects of bulk flow pulsations on film cooling from a single row of simple angle film cooling holes. The pulsations are in the form of sinusoidal variations of static pressure and streamwise velocity. Such pulsations are important in turbine studies because: (i) Static pressure pulsations result in significant periodic variations of film cooling flow rates, coverage, and trajectories, and (ii) static pressure pulsations occur near blade surfaces in operating engines from potential flow interactions between moving blade rows and from families of passing shock waves. Distributions of ensemble-averaged and time-averaged Reynolds stress tensor components are investigated just downstream of the holes along with distributions of all three mean velocity components. Important changes are evident in all measured quantities. In particular, maximum Reynolds shear stresses −2u′υ′/u∞2 are lower in regions containing the largest film concentrations because the strong shear layer produced by the injectant is more three dimensional, larger in extent, and oscillates its position from the wall with time.


1965 ◽  
Vol 7 (1) ◽  
pp. 1-7 ◽  
Author(s):  
P. J. Baker

This paper presents the results of heat transfer measurements taken on a two-dimensional supersonic parallel diffuser. The wall static pressure distributions and the corresponding heat transfer coefficients and fluxes have been measured for a range of initial total pressures. The effects of varying the area of the diffuser cross-section for the same upstream generating nozzle have also been studied. Mach number profiles measured at sections along the diffuser show that in the presence of shock waves and a positive pressure gradient the flow is very much underdeveloped. In general, the mean level of heat transfer is found to be much greater than that predicted by conventional empirical equations for subsonic pipe flows with zero pressure gradient. Further, on comparison between normal and oblique shock diffusion the former is found to give the higher level of heat transfer.


2000 ◽  
Vol 122 (4) ◽  
pp. 717-724 ◽  
Author(s):  
Gm. S. Azad ◽  
Je-Chin Han ◽  
Shuye Teng ◽  
Robert J. Boyle

Heat transfer coefficient and static pressure distributions are experimentally investigated on a gas turbine blade tip in a five-bladed stationary linear cascade. The blade is a two-dimensional model of a first-stage gas turbine rotor blade with a blade tip profile of a GE-E3 aircraft gas turbine engine rotor blade. The flow condition in the test cascade corresponds to an overall pressure ratio of 1.32 and exit Reynolds number based on axial chord of 1.1×106. The middle 3-blade has a variable tip gap clearance. All measurements are made at three different tip gap clearances of about 1, 1.5, and 2.5 percent of the blade span. Heat transfer measurements are also made at two different turbulence intensity levels of 6.1 and 9.7 percent at the cascade inlet. Static pressure measurements are made in the midspan and the near-tip regions as well as on the shroud surface, opposite the blade tip surface. Detailed heat transfer coefficient distributions on the plane tip surface are measured using a transient liquid crystal technique. Results show various regions of high and low heat transfer coefficient on the tip surface. Tip clearance has a significant influence on local tip heat transfer coefficient distribution. Heat transfer coefficient also increases about 15–20 percent along the leakage flow path at higher turbulence intensity level of 9.7 over 6.1 percent. [S0889-504X(00)00404-9]


Sign in / Sign up

Export Citation Format

Share Document