Biaxial stress measurements on cloth samples and bias constructed parachute models

1979 ◽  
Author(s):  
H. HEINRICH
Author(s):  
Mitchell D. Olson ◽  
Michael R. Hill ◽  
Vipul I. Patel ◽  
Ondrej Muránsky ◽  
Thomas Sisneros

This paper describes a sequence of residual stress measurements made to determine a two-dimensional map of biaxial residual stress in a stainless steel weld. A long stainless steel (316L) plate with an eight-pass groove weld (308L filler) was used. The biaxial stress measurements follow a recently developed approach, comprising a combination of contour method and slitting measurements, with a computation to determine the effects of out-of-plane stress on a thin slice. The measured longitudinal stress is highly tensile in the weld- and heat-affected zone, with a maximum around 450 MPa, and compressive stress toward the transverse edges around −250 MPa. The total transverse stress has a banded profile in the weld with highly tensile stress at the bottom of the plate (y = 0) of 400 MPa, rapidly changing to compressive stress (at y = 5 mm) of −200 MPa, then tensile stress at the weld root (y = 17 mm) and in the weld around 200 MPa, followed by compressive stress at the top of the weld at around −150 MPa. The results of the biaxial map compare well with the results of neutron diffraction measurements and output from a computational weld simulation.


2021 ◽  
Vol 160 ◽  
pp. 107336
Author(s):  
Ziqian Zhang ◽  
Gang Shi ◽  
Xuesen Chen ◽  
Lijun Wang ◽  
Le Zhou

Author(s):  
Shirley García ◽  
Thairon Reis ◽  
Auteliano Antunes dos Santos Junior

Author(s):  
Henki Ødegaard ◽  
Bjørn Nilsen

AbstractTo avoid hydraulic failure of unlined pressure tunnels, knowledge of minimum principal stress is needed. Such knowledge is only obtainable from in situ measurements, which are often time-consuming and relatively costly, effectively limiting the number of measurements typically performed. In an effort to enable more stress measurements, the authors propose a simplified and cost-effective stress measuring method; the Rapid Step-Rate Test (RSRT), which is based on existing hydraulic testing methods. To investigate the ability of this test to measure fracture normal stresses in field-like conditions, a true triaxial laboratory test rig has been developed. Hydraulic jacking experiments performed on four granite specimens, each containing a fracture, have been performed. Interpretation of pressure-, flow- and acoustic emission (AE) data has been used to interpret fracture behaviour and to assess fracture normal stresses. Our experimental data suggest that the proposed test method, to a satisfactory degree of reliability, can measure the magnitude of fracture normal stress. In addition, a clear correlation has been found between fracture closure and sudden increase in AE rate, suggesting that AE monitoring during testing can serve as a useful addition to the test. The rapid step-rate test is also considered relevant for field-scale measurements, with only minor adaptions. Our findings suggest that the RSRT can represent a way to get closer to the ideal of performing more testing along the entire length of pressure tunnel, and not only at key locations, which requires interpolation of stress data with varying degree of validity.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 698
Author(s):  
Wenwang Wei ◽  
Yi Peng ◽  
Jiabin Wang ◽  
Muhammad Farooq Saleem ◽  
Wen Wang ◽  
...  

AlN epilayers were grown on a 2-inch [0001] conventional flat sapphire substrate (CSS) and a nano-patterned sapphire substrate (NPSS) by metalorganic chemical vapor deposition. In this work, the effect of the substrate template and temperature on stress and optical properties of AlN films has been studied by using Raman spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-visible spectrophotometer and spectroscopic ellipsometry (SE). The AlN on NPSS exhibits lower compressive stress and strain values. The biaxial stress decreases from 1.59 to 0.60 GPa for AlN on CSS and from 0.90 to 0.38 GPa for AlN on NPSS sample in the temperature range 80–300 K, which shows compressive stress. According to the TEM data, the stress varies from tensile on the interface to compressive on the surface. It can be deduced that the nano-holes provide more channels for stress relaxation. Nano-patterning leads to a lower degree of disorder and stress/strain relaxes by the formation of the nano-hole structure between the interface of AlN epilayers and the substrate. The low crystal disorder and defects in the AlN on NPSS is confirmed by the small Urbach energy values. The variation in bandgap (Eg) and optical constants (n, k) with temperature are discussed in detail. Nano-patterning leads to poor light transmission due to light scattering, coupling, and trapping in nano-holes.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Ye Yu ◽  
Tao Wang ◽  
Xiufang Chen ◽  
Lidong Zhang ◽  
Yang Wang ◽  
...  

AbstractStrain modulation is crucial for heteroepitaxy such as GaN on foreign substrates. Here, the epitaxy of strain-relaxed GaN films on graphene/SiC substrates by metal-organic chemical vapor deposition is demonstrated. Graphene was directly prepared on SiC substrates by thermal decomposition. Its pre-treatment with nitrogen-plasma can introduce C–N dangling bonds, which provides nucleation sites for subsequent epitaxial growth. The scanning transmission electron microscopy measurements confirm that part of graphene surface was etched by nitrogen-plasma. We study the growth behavior on different areas of graphene surface after pre-treatment, and propose a growth model to explain the epitaxial growth mechanism of GaN films on graphene. Significantly, graphene is found to be effective to reduce the biaxial stress in GaN films and the strain relaxation improves indium-atom incorporation in InGaN/GaN multiple quantum wells (MQWs) active region, which results in the obvious red-shift of light-emitting wavelength of InGaN/GaN MQWs. This work opens up a new way for the fabrication of GaN-based long wavelength light-emitting diodes.


Sign in / Sign up

Export Citation Format

Share Document