Using human motion perception models to optimize flight simulator motion algorithms

Author(s):  
K. FORSSTROM ◽  
J. DOTY ◽  
F. CARDULLO
2000 ◽  
Vol 59 (2) ◽  
pp. 85-88 ◽  
Author(s):  
Rudolf Groner ◽  
Marina T. Groner ◽  
Kazuo Koga

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sichao Yang ◽  
Johannes Bill ◽  
Jan Drugowitsch ◽  
Samuel J. Gershman

AbstractMotion relations in visual scenes carry an abundance of behaviorally relevant information, but little is known about how humans identify the structure underlying a scene’s motion in the first place. We studied the computations governing human motion structure identification in two psychophysics experiments and found that perception of motion relations showed hallmarks of Bayesian structural inference. At the heart of our research lies a tractable task design that enabled us to reveal the signatures of probabilistic reasoning about latent structure. We found that a choice model based on the task’s Bayesian ideal observer accurately matched many facets of human structural inference, including task performance, perceptual error patterns, single-trial responses, participant-specific differences, and subjective decision confidence—especially, when motion scenes were ambiguous and when object motion was hierarchically nested within other moving reference frames. Our work can guide future neuroscience experiments to reveal the neural mechanisms underlying higher-level visual motion perception.


2005 ◽  
Vol 167 (4) ◽  
pp. 504-525 ◽  
Author(s):  
Igor Riečanský ◽  
Alexander Thiele ◽  
Claudia Distler ◽  
Klaus-Peter Hoffmann

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 580
Author(s):  
Michał Gołębiewski ◽  
Marta Galant-Gołębiewska ◽  
Remigiusz Jasiński

Protection of the natural environment is a key activity driving development in the transport discipline today. The use of simulators to train civil aviation pilots provides an excellent opportunity to maintain the balance between efficiency and limit the negative impact of transport on the environment. Therefore, we decided to determine the impact of selected simulations of air operations on energy consumption. The aim of the research was to determine the energy consumption of the flight simulator depending on the type of flight operation and configuration used. We also decided to compare the obtained result with the energy consumption of an aircraft of a similar class, performing a similar aviation operation and other means of transport. In order to obtain the results, a research plan was proposed consisting of 12 scenarios differing in the simulated aircraft model, weather conditions and the use of the simulator motion platform. In each of the scenarios, energy consumption was measured, taking into account the individual components of the simulator. The research showed that the use of a flight simulator has a much smaller negative impact on the natural environment than flying in a traditional plane. Use of a motion platform indicated a change in energy consumption of approximately 40% (in general, flight simulator configuration can change energy consumption by up to 50%). The deterioration of weather conditions during the simulation caused an increase in energy consumption of 14% when motion was disabled and 18% when motion was enabled. Energy consumption in the initial stages of pilot training can be reduced by 97% by using flight simulators compared to aircraft training.


1988 ◽  
Vol 25 (7) ◽  
pp. 639-646 ◽  
Author(s):  
Lloyd D. Reid ◽  
Meyer A. Nahon

Nature ◽  
1978 ◽  
Vol 275 (5675) ◽  
pp. 55-56 ◽  
Author(s):  
V. S. RAMACHANDRAN ◽  
R. L. GREGORY

2016 ◽  
Vol 116 (3) ◽  
pp. 1275-1285 ◽  
Author(s):  
Benjamin T. Crane

Thresholds and biases of human motion perception were determined for yaw rotation and sway (left-right) and surge (fore-aft) translation, independently and in combination. Stimuli were 1 Hz sinusoid in acceleration with a peak velocity of 14°/s or cm/s. Test stimuli were adjusted based on prior responses, whereas the distracting stimulus was constant. Seventeen human subjects between the ages of 20 and 83 completed the experiments and were divided into 2 groups: younger and older than 50. Both sway and surge translation thresholds significantly increased when combined with yaw rotation. Rotation thresholds were not significantly increased by the presence of translation. The presence of a yaw distractor significantly biased perception of sway translation, such that during 14°/s leftward rotation, the point of subjective equality (PSE) occurred with sway of 3.2 ± 0.7 (mean ± SE) cm/s to the right. Likewise, during 14°/s rightward motion, the PSE was with sway of 2.9 ± 0.7 cm/s to the left. A sway distractor did not bias rotation perception. When subjects were asked to report the direction of translation while varying the axis of yaw rotation, the PSE at which translation was equally likely to be perceived in either direction was 29 ± 11 cm anterior to the midline. These results demonstrated that rotation biased translation perception, such that it is minimized when rotating about an axis anterior to the head. Since the combination of translation and rotation during ambulation is consistent with an axis anterior to the head, this may reflect a mechanism by which movements outside the pattern that occurs during ambulation are perceived.


Author(s):  
PAUL W. CARO

Flight simulator motion has been demonstrated to affect performance in the simulator, but recent transfer of training studies have failed to demonstrate an effect upon in-flight performance. However, these transfer studies examined the effects of motion in experimental designs that did not permit a dependency relationship to be established between the characteristics of the motion simulated and the training objectives or the performance measured. Another investigator has suggested that motion cues which occur in flight can be dichotomized as maneuver and disturbance cues, i.e., as resulting from pilot control action or from external forces. This paper examines each type cue and relates it analytically to training requirements. The need to establish such relationships in simulator design is emphasized. Future transfer studies should examine specific training objectives that can be expected to be effected by motion.


Author(s):  
Carlos F. Rodri´guez ◽  
Nicola´s Ochoa Lleras

This article presents a methodology for the definition of vehicle simulator motion cues based on the biomechanical response of the vestibular organs to motion stimuli. The proposed method begins with an extension of the human motion perception model which includes the simulator kinematics. The goal of this procedure is to define the motion cues so that they reproduce vestibular sensor signals matching those of a reference motion, in terms of the Sensor-State vector. This vector is estimated by using dynamic models of the vestibular organs’ biomechanics. A definition of equivalent motion based on properties of these models is introduced. This definition allows for the proposal of a strategy to imitate the vestibular sensor signals. The methodology has been tested in simulation with a 3-dof planar motion simulator, resulting in satisfactory results. Finally, the potential of the proposed methodology is discussed.


Sign in / Sign up

Export Citation Format

Share Document