Test facility requirements for combined cycle engines at supersonic flight conditions

1994 ◽  
Author(s):  
Robert Engers ◽  
Daniel Cresci ◽  
Rick Simonsen
2001 ◽  
Vol 123 (2) ◽  
pp. 160-163 ◽  
Author(s):  
Rainer Tamme ◽  
Reiner Buck ◽  
Michael Epstein ◽  
Uriyel Fisher ◽  
Chemi Sugarmen

This paper presents a novel process comprising solar upgrading of hydrocarbons by steam reforming in solar specific receiver-reactors and utilizing the upgraded, hydrogen-rich fuel in high efficiency conversion systems, such as gas turbines or fuel cells. In comparison to conventionally heated processes about 30% of fuel can be saved with respect to the same specific output. Such processes can be used in small scale as a stand-alone system for off-grid markets as well as in large scale to be operated in connection with conventional combined-cycle plants. The complete reforming process will be demonstrated in the SOLASYS project, supported by the European Commission in the JOULE/THERMIE framework. The project has been started in June 1998. The SOLASYS plant is designed for 300 kWel output, it consists of the solar field, the solar reformer and a gas turbine, adjusted to operate with the reformed gas. The SOLASYS plant will be operated at the experimental solar test facility of the Weizmann Institute of Science in Israel. Start-up of the pilot plant is scheduled in April 2001. The midterm goal is to replace fossil fuels by renewable or non-conventional feedstock in order to increase the share of renewable energy and to establish processes with only minor or no CO2 emission. Examples might be upgrading of bio-gas from municipal solid waste as well as upgrading of weak gas resources.


Author(s):  
Yoriharu Murata ◽  
Naoki Shibukawa ◽  
Itaru Murakami ◽  
Joji Kaneko ◽  
Kenichi Okuno

The titanium 48-inch last stage blade that has world’s largest class exhaust annulus area and tip speed for 60Hz steam turbines has been developed. Concept of this blade is to achieve high performance and compact design of steam turbine for 1000MW thermal power plant and 300MW combined cycle plant. In the design of this blade, the optimization design has been done by using the recent analysis technologies, three dimensional CFD in aerodynamic design and FEA in mechanical design. The blade has curved axial fir-tree dovetail, snubber cover both at the tip and at the mid-span. To achieve superior vibration characteristics, continuously coupled structure was adopted for blade connection. To confirm the validity of design, first, sub-scale model blades were provided and tested in model steam turbine test facilities. Second, one row of actual size blades were assembled on the wheel of test rotor and were exposed rotating vibration test in a wheel box. Finally, these blades were tested at actual steam conditions in a full scale steam turbine test facility. In this paper, aerodynamic and mechanical design features will be introduced, and the test results of both sub-scale and actual size blades under real steam turbine operating conditions will be presented.


Author(s):  
M. Klohr ◽  
J. Schmidtke ◽  
S. Tschirren ◽  
P. Rihak

On 20 October 1993, the first ABB GT13E2 gas turbine was put into operation. This 165 MW class gas turbine achieves 35,7% thermal efficiency in single cycle application and up to 54,3% (according ISO standard 3977, Annexe F) in a three pressure system. An optimised turbine and compressor design along with the increased turbine inlet temperature, lead to improved efficiency and electrical output. A new concept for the combustor aimed at meeting the increasing demands on gas turbine emissions. The GT13E2 is equipped with the new single annular combustor and 72 of the ABB EV double cone burners. The commissioning and testing of the first GT13E2 was carried out at the Kawasaki Gas Turbine Research Center (KGRC) in Sodegaura City near Tokyo, Japan. The gas turbine was assembled with various measurement systems to monitor static and dynamic pressure, gas and metal temperature, expansion, vibration, velocity and emissions. The facility will be used during a 15 year joint test program by ABB and Kawasaki Heavy Industries (KHI) to obtain a sound database of operating experience for further improvements of the GT13E2 gas turbine. Therefore, mid 1994 a second test phase was conducted and early 1995 a third test period is scheduled. In parallel, the 2nd and 3rd GT13E2’s were commissioned and tested at the Deeside Combined Cycle Power Plant near Chester, Great Britain. In November 1994, the 4th GT13E2 at Lage Weide was successfully commissioned. This paper describes the operating experience with the GT13E2 during the first commissioning and test phases at KGRC and Deeside. The design features, the test facility, the instrumentation, the commissioning and test results are presented and discussed.


Author(s):  
F. Eulitz ◽  
B. Kuesters ◽  
F. Mildner ◽  
M. Mittelbach ◽  
A. Peters ◽  
...  

Siemens H-Class. Siemens has developed the world-largest H-class Gas Turbine (SGT™) that sets unparalleled standards for high efficiency, low life cycle costs and operating flexibility. With a power output of 340+ MW, the SGT5–8000H gas turbine will be the primary driver of the new Siemens Combined Cycle Power Plant (SCC™) for the 50 Hz market, the SCC5–8000H, with an output of 530+ MW at more than 60% efficiency. After extensive lab and component testing, the prototype has been shipped to the power plant for an 18-month validation phase. In this paper, the compressor technology, which was developed for the Siemens H-class, is presented through its development and validation phases. Reliability and Availability. The compressor has been extensively validated in the Siemens Berlin Test Facility during consecutive engine test programs. All key parameters, such as mass flow, operating range, efficiency and aero mechanical behavior meet or exceed expectations. Six-sigma methodology has been exploited throughout the development to implement the technologies into a robust design. Efficiency. The new compressor technology applies the Siemens advanced aerodynamics design methodology based on the high performance airfoil (HPA) systematic which leads to broader operation range and higher efficiency than a standard controlled diffusion airfoil (CDA) design. Operational Flexibility. The compressor features an IGV and three rows of variable guide vanes for improved turndown capability and improved part load efficiency. Serviceability. The design has been optimized for serviceability and less complexity. Following the Siemens tradition, all compressor rotating blades can be replaced without rotor lift or destacking. Evolutionary Design Innovation. The compressor design incorporates the best features and experience from the operating fleets and technology innovation prepared through detailed research, analysis and lab testing in the past decade. The design tools are based on best practices from former Siemens KWU and Westinghouse with enhancements allowing for routine front-to-back compressor 3D CFD multistage analysis, unsteady blade row interaction, forced response analyses and aero-elastic analysis.


Author(s):  
Sandeep K. Alavandi ◽  
Shahrokh Etemad ◽  
Benjamin D. Baird

Precision Combustion, Inc., (PCI) in close collaboration with Solar Turbines, Incorporated, has developed and demonstrated a catalytic combustion system for hydrogen fueled turbines that can reduce oxides of nitrogen (NOx) emissions to low single digit levels while maintaining or improving current levels of efficiency and eliminating emissions of carbon dioxide. A full scale Rich Catalytic Hydrogen (RCH) injector was developed and successfully tested at Solar Turbines, Incorporated high pressure test facility, demonstrating low single digit NOx emissions for hydrogen fuel in the primary zone temperature range of 1200°C–1500°C (2200°F–2750°F). The testing also demonstrated low combustion noise with stable and robust operation. A primary benefit of the catalytic hydrogen combustor technology is the capability for significantly-reduced NOx without costly post-combustion controls. This translates into reduced dilution requirements for a target NOx level, substantially improving efficiency and reducing operating costs. In addition, quiet combustor operation increases gas turbine component life. These advantages advance Department of Energy (DOE’s) objectives for achievement of low NOx emissions, improvement in efficiency vs. post-combustion controls, fuel flexibility, a significant net reduction in Integrated Gasification Combined Cycle (IGCC) system net capital and operating costs, and a route to commercialization across the power generation field from micro turbines to industrial and utility turbines.


Author(s):  
K. Takeishi ◽  
H. Mori ◽  
K. Tsukagoshi ◽  
M. Takahama

Mitsubishi Heavy industries Ltd. developed a new high efficiency medium-size (25–35MW) gas turbine MF-221 to be used in a cogeneration plant. This gas turbine is an upscaled design of the MF-111 model, which has accumulated an operation experience of more than 1,020,000hrs. The improvement of performance and reliability was made possible by technology transfer from the latest 501F/701F gas turbine with respect to compressor and turbine aerodynamics, materials, coating and turbine cooling technology. The MF-221 has a base load rating of 30MW at 1250°C turbine inlet temperature. Its thermal efficiency is 32% and 45% for simple and combined cycle application, respectively. It consists of a single shaft, 17-stage axial compressor, 10 can-type combustors and a 3-stage axial turbine. The prototype engine has been tested in a full-load test facility at Takasago Machinery Works to confirm the efficiency and the reliability of all parts exposed to high temperatures.


Author(s):  
Christian Vandervort

The power generation industry is facing unprecedented challenges. High fuel costs combined with an increased penetration of renewable power has resulted in greater demand for high efficiency and operational flexibility. Imperative for a reduced carbon footprint places an even higher premium on efficiency. Power producers are seeking highly efficient, reliable, and operationally flexible solutions that provide long-term profitability in a volatile environment. New generation must also be cost-effective to ensure affordability for both domestic and industrial consumers. Gas turbine combined cycle power plants provide reliable, dispatch-able generation with low cost of electricity, reduced environmental impact, and improved flexibility. GE’s air-cooled, H-class gas turbines (7/9HA) are engineered to achieve greater than 63% net, combined cycle efficiency while delivering operational flexibility through deep, emission-compliant turndown and high ramp rates. The largest of these gas turbines, the 9HA.02, exceeds 64% combined cycle efficiency (net, ISO) in a 1 × 1, single-shaft configuration. In parallel, the power plant has been configured for rapid construction and commissioning enabling timely revenue generation for power plant developers and owners. The HA platform is enabled by 1) use of a simple air-cooling system for the turbine section that does not require external heat exchange and the associated cost and complexity, and 2) use of well-known materials and coatings with substantial operating experience at high firing temperatures. Key technology improvements for the HA’s include advanced cooling and sealing, utilization of unsteady aerodynamic methodologies, axially staged combustion and next generation thermal barrier coating (TBC). Validation of the architecture and technology insertion is performed in a dedicated test facility over the full operating range. As of February 2018, a total of 18 HA power plants have achieved COD (Commercial Operation). This paper will address three topics relating to the HA platform: 1) gas turbine product technology, 2) gas turbine validation and 3) integrated power plant commissioning and operating experience.


1979 ◽  
Author(s):  
W. A. Boothe ◽  
J. C. Mcmullen

An MS5000 gas turbine is now being redesigned for integrated operation on low Btu Lurgi coal gas in the Powerton Gasification Combined Cycle Test Facility. Air is extracted from the machine to provide process air for the gasifiers, and a heat recovery steam generator provides steam for the gas plant. This paper describes the design modifications to the gas turbine and its control system to accommodate such operation. Since the facility will demonstrate operation in a variety of control modes using gas produced from a wide range of domestic coals, the gas turbine control system emphasizes flexibility and incorporates several functions unique to low Btu gas applications. Major modifications to the fuel and combustion systems are also required. Test results on the resulting new combustor design are reported in a companion paper (1).


Author(s):  
T. Johnson ◽  
B. Becker ◽  
J. Seume ◽  
H. Termuehlen

The first V84.3A gas turbine as tested at the full-load test facility of the Siemens gas turbine factory in Berlin, Germany has now been installed at the Kansas City Power & Light (KCP&L) Company’s Hawthorn Power Station. The unit will be started in spring of this year and is scheduled to be available in June for the 1997 summer peak. In times when active power is not in demand, the generator can be operated as a synchronous condenser. For this mode of operation, a synchronous clutch has been installed between the gas turbine and the generator. The advanced V84.3A gas turbine has been chosen because of its high simple cycle efficiency based on the measured 38% in the test facility, providing peaking capacity with a minimum on fuel costs. In addition, later conversion to highly efficient combined cycle operation can easily be performed without the need for external air or even steam cooling systems.


Sign in / Sign up

Export Citation Format

Share Document