scholarly journals First V84.3A Gas Turbine Installation at Hawthorn Station

Author(s):  
T. Johnson ◽  
B. Becker ◽  
J. Seume ◽  
H. Termuehlen

The first V84.3A gas turbine as tested at the full-load test facility of the Siemens gas turbine factory in Berlin, Germany has now been installed at the Kansas City Power & Light (KCP&L) Company’s Hawthorn Power Station. The unit will be started in spring of this year and is scheduled to be available in June for the 1997 summer peak. In times when active power is not in demand, the generator can be operated as a synchronous condenser. For this mode of operation, a synchronous clutch has been installed between the gas turbine and the generator. The advanced V84.3A gas turbine has been chosen because of its high simple cycle efficiency based on the measured 38% in the test facility, providing peaking capacity with a minimum on fuel costs. In addition, later conversion to highly efficient combined cycle operation can easily be performed without the need for external air or even steam cooling systems.

Author(s):  
K. Takeishi ◽  
H. Mori ◽  
K. Tsukagoshi ◽  
M. Takahama

Mitsubishi Heavy industries Ltd. developed a new high efficiency medium-size (25–35MW) gas turbine MF-221 to be used in a cogeneration plant. This gas turbine is an upscaled design of the MF-111 model, which has accumulated an operation experience of more than 1,020,000hrs. The improvement of performance and reliability was made possible by technology transfer from the latest 501F/701F gas turbine with respect to compressor and turbine aerodynamics, materials, coating and turbine cooling technology. The MF-221 has a base load rating of 30MW at 1250°C turbine inlet temperature. Its thermal efficiency is 32% and 45% for simple and combined cycle application, respectively. It consists of a single shaft, 17-stage axial compressor, 10 can-type combustors and a 3-stage axial turbine. The prototype engine has been tested in a full-load test facility at Takasago Machinery Works to confirm the efficiency and the reliability of all parts exposed to high temperatures.


Author(s):  
Christian Vandervort

The power generation industry is facing unprecedented challenges. High fuel costs combined with an increased penetration of renewable power has resulted in greater demand for high efficiency and operational flexibility. Imperative for a reduced carbon footprint places an even higher premium on efficiency. Power producers are seeking highly efficient, reliable, and operationally flexible solutions that provide long-term profitability in a volatile environment. New generation must also be cost-effective to ensure affordability for both domestic and industrial consumers. Gas turbine combined cycle power plants provide reliable, dispatch-able generation with low cost of electricity, reduced environmental impact, and improved flexibility. GE’s air-cooled, H-class gas turbines (7/9HA) are engineered to achieve greater than 63% net, combined cycle efficiency while delivering operational flexibility through deep, emission-compliant turndown and high ramp rates. The largest of these gas turbines, the 9HA.02, exceeds 64% combined cycle efficiency (net, ISO) in a 1 × 1, single-shaft configuration. In parallel, the power plant has been configured for rapid construction and commissioning enabling timely revenue generation for power plant developers and owners. The HA platform is enabled by 1) use of a simple air-cooling system for the turbine section that does not require external heat exchange and the associated cost and complexity, and 2) use of well-known materials and coatings with substantial operating experience at high firing temperatures. Key technology improvements for the HA’s include advanced cooling and sealing, utilization of unsteady aerodynamic methodologies, axially staged combustion and next generation thermal barrier coating (TBC). Validation of the architecture and technology insertion is performed in a dedicated test facility over the full operating range. As of February 2018, a total of 18 HA power plants have achieved COD (Commercial Operation). This paper will address three topics relating to the HA platform: 1) gas turbine product technology, 2) gas turbine validation and 3) integrated power plant commissioning and operating experience.


2017 ◽  
Author(s):  
Andrew Detor ◽  
◽  
Richard DiDomizio ◽  
Don McAllister ◽  
Erica Sampson ◽  
...  

2015 ◽  
Vol 5 (2) ◽  
pp. 89
Author(s):  
Munzer S. Y. Ebaid ◽  
Qusai Z. Al-hamdan

<p class="1Body">Several modifications have been made to the simple gas turbine cycle in order to increase its thermal efficiency but within the thermal and mechanical stress constrain, the efficiency still ranges between 38 and 42%. The concept of using combined cycle power or CPP plant would be more attractive in hot countries than the combined heat and power or CHP plant. The current work deals with the performance of different configurations of the gas turbine engine operating as a part of the combined cycle power plant. The results showed that the maximum CPP cycle efficiency would be at a point for which the gas turbine cycle would have neither its maximum efficiency nor its maximum specific work output. It has been shown that supplementary heating or gas turbine reheating would decrease the CPP cycle efficiency; hence, it could only be justified at low gas turbine inlet temperatures. Also it has been shown that although gas turbine intercooling would enhance the performance of the gas turbine cycle, it would have only a slight effect on the CPP cycle performance.</p>


Author(s):  
Satoshi Hada ◽  
Masanori Yuri ◽  
Junichiro Masada ◽  
Eisaku Ito ◽  
Keizo Tsukagoshi

MHI recently developed a 1600°C class J-type gas turbine, utilizing some of the technologies developed in the National Project to promote the development of component technology for the next generation 1700°C class gas turbine. This new frame is expected to achieve higher combined cycle efficiency and will contribute to reduce CO2 emissions. The target combined cycle efficiency of the J type gas turbine will be above 61.5% (gross, ISO standard condition, LHV) and the 1on1 combined cycle output will reach 460MW for 60Hz engine and 670MW for 50Hz engine. This new engine incorporates: 1) A high pressure ratio compressor based on the advanced M501H compressor, which was verified during the M501H development in 1999 and 2001. 2) Steam cooled combustor, which has accumulated extensive experience in the MHI G engine (> 1,356,000 actual operating hours). 3) State-of-art turbine designs developed through the 1700°C gas turbine component technology development program in Japanese National Project for high temperature components. This paper discusses the technical features and the updated status of the J-type gas turbine, especially the operating condition of the J-type gas turbine in the MHI demonstration plant, T-Point. The trial operation of the first M501J gas turbine was started at T-point in February 2011 on schedule, and major milestones of the trial operation have been met. After the trial operation, the first commercial operation has taken place as scheduled under a predominantly Daily-Start-and-Stop (DSS) mode. Afterward, MHI performed the major inspection in October 2011 in order to check the mechanical condition, and confirmed that the hot parts and other parts were in sound condition.


Author(s):  
Ivan G. Rice

Interest in the reheat-gas turbine (RHGT) as a way to improve combined-cycle efficiency is gaining momentum. Compression intercooling makes it possible to readily increase the reheat-gas-turbine cycle-pressure ratio and at the same time increase gas-turbine output; but at the expense of some combined-cycle efficiency and mechanical complexity. This paper presents a thermodynamic analysis of the intercooled cycle and pinpoints the proper intercooling pressure range for minimum combined-cycle-efficiency loss. At the end of the paper two-intercooled reheat-gas-turbine configurations are presented.


1982 ◽  
Vol 104 (1) ◽  
pp. 9-22 ◽  
Author(s):  
I. G. Rice

The reheat (RH) pressure can be appreciably increased by applying steam cooling to the gas-generator (GG) turbine blading which in turn allows a higher RH firing temperature for a fixed exhaust temperature. These factors increase gas turbine output and raise combined-cycle efficiency. The GG turbine blading will approach “uncooled expansion efficiency”. Eliminating cooling air increases the gas turbine RH pressure by 10.6 percent. When steam is used (injected) as the blade coolant, additional GG work is also developed which further increases the RH pressure by another 12.0 percent to yield a total increase of approximately 22.6 percent. The 38-cycle pressure ratio 2400° F (1316° C) TIT GG studied produces a respectable 6.5 power turbine expansion ratio. The higher pressure also noticeably reduces the physical size of the RH combustor. This paper presents an analysis of the RH pressure rise when applying steam to blade cooling.


Author(s):  
Alberto Traverso ◽  
Stefano Barberis ◽  
Davide Lima ◽  
Aristide F. Massardo

In this work the dynamic behaviour and the control strategy of a 12MWe size gas turbine hybridised with concentrated solar heat source has been investigated. Hybridised gas turbine cycles are attractive because of their high efficiency, potentially equal to combined cycle efficiency, and because of their dispatchable power capability. An existing gas turbine model has been modified into a hybrid layout to incorporate high temperature heat from a concentrated solar field, through a high pressure air-cooled receiver. The system does not involve any hot air valve and includes a ceramic thermal storage. The plant dynamic model was developed using the original TRANSEO simulation tool developed at the University of Genoa. Initially, plant steady-state performance is analysed, identifying potential issues. Then, the different dynamic operations (storage charging, discharging and bypass) are simulated, showing the feasibility of the control strategy proposed. Eventually, design recommendations are drawn to improve the flexibility and the time response of such kind of plants.


Author(s):  
R. Yadav

The increase in efficiency of combined cycle has mainly been caused by the improvements in gas turbine cycle efficiency. With the increase in firing temperature the exhaust temperature is substantially high around 873 K for moderate compressor pressure ratio, which has positive influence on steam cycle efficiency. Minimizing the irreversibility within the heat recovery steam generator HRSG and choosing proper steam cycle configuration with optimized steam parameters improve the steam cycle efficiency and thus in turn the combined cycle efficiency. In this paper, LM9001H gas turbine, a state of art technology turbine with modified compressor pressure ratio has been chosen as a topping cycle. Various bottoming cycles alternatives (sub-critical) coupled with LM9001H topping cycle with and without recuperation such as dual and triple pressure steam cycles with and without reheat have been chosen to predict the performance of combined cycle.


Author(s):  
Hossin Omar ◽  
Mohamed Elmnefi

The Pressurized Fluidized Circulating Bed (PFCB) combined cycle was simulated. The simulations balance the energy between the elements of the unit, which consists of gas turbine cycle and steam turbine cycle. The PFCB is used as a combustor and steam generator at the same time. The simulations were carried out for PFCB combined cycle plant for two cases. In the first case, the simulations were performed for combined cycle with reheat in the steam turbine cycle. While in the second case, the simulations were carried out for the PFCB combined cycle with extra combustor and steam turbine cycle with reheat. For both cases, the effect of steam inlet pressure on the combined cycle efficiency was predicted. It was found that increasing of steam pressure results in increase in the combined cycle thermal efficiency. The effect of the inlet flue gases temperature on the gas turbine and on the combined cycle efficiencies was also predicted. The maximum PFCB combined cycle efficiency occurs at a compression ratio of 18, which is the case of utilizing an extra combustor. The simulations were carried out for only one fuel composition and for a compression ratio ranges between 1 to 40.


Sign in / Sign up

Export Citation Format

Share Document