Reynolds number dependence of the mean flow in a circular pipe

1997 ◽  
Author(s):  
M. Zagarola ◽  
A. Smits ◽  
M. Zagarola ◽  
A. Smits
2021 ◽  
Author(s):  
Yaomin Zhao ◽  
Richard D. Sandberg

Abstract We present the first wall-resolved high-fidelity simulations of high-pressure turbine (HPT) stages at engine-relevant conditions. A series of cases have been performed to investigate the effects of varying Reynolds numbers and inlet turbulence on the aerothermal behavior of the stage. While all of the cases have similar mean pressure distribution, the cases with higher Reynolds number show larger amplitude wall shear stress and enhanced heat fluxes around the vane and rotor blades. Moreover, higher-amplitude turbulence fluctuations at the inlet enhance heat transfer on the pressure-side and induce early transition on the suction-side of the vane, although the rotor blade boundary layers are not significantly affected. In addition to the time-averaged results, phase-lock averaged statistics are also collected to characterize the evolution of the stator wakes in the rotor passages. It is shown that the stretching and deformation of the stator wakes is dominated by the mean flow shear, and their interactions with the rotor blades can significantly intensify the heat transfer on the suction side. For the first time, the recently proposed entropy analysis has been applied to phase-lock averaged flow fields, which enables a quantitative characterization of the different mechanisms responsible for the unsteady losses of the stages. The results indicate that the losses related to the evolution of the stator wakes is mainly caused by the turbulence production, i.e. the direct interaction between the wake fluctuations and the mean flow shear through the rotor passages.


2019 ◽  
Vol 865 ◽  
pp. 1085-1109 ◽  
Author(s):  
Yutaro Motoori ◽  
Susumu Goto

To understand the generation mechanism of a hierarchy of multiscale vortices in a high-Reynolds-number turbulent boundary layer, we conduct direct numerical simulations and educe the hierarchy of vortices by applying a coarse-graining method to the simulated turbulent velocity field. When the Reynolds number is high enough for the premultiplied energy spectrum of the streamwise velocity component to show the second peak and for the energy spectrum to obey the$-5/3$power law, small-scale vortices, that is, vortices sufficiently smaller than the height from the wall, in the log layer are generated predominantly by the stretching in strain-rate fields at larger scales rather than by the mean-flow stretching. In such a case, the twice-larger scale contributes most to the stretching of smaller-scale vortices. This generation mechanism of small-scale vortices is similar to the one observed in fully developed turbulence in a periodic cube and consistent with the picture of the energy cascade. On the other hand, large-scale vortices, that is, vortices as large as the height, are stretched and amplified directly by the mean flow. We show quantitative evidence of these scale-dependent generation mechanisms of vortices on the basis of numerical analyses of the scale-dependent enstrophy production rate. We also demonstrate concrete examples of the generation process of the hierarchy of multiscale vortices.


1971 ◽  
Vol 93 (3) ◽  
pp. 433-443 ◽  
Author(s):  
G. Heskestad

Measurements have been made of the mean flow in a two-dimensional, constant-width, ninety-degree miter bend and compared with predictions of available free-streamline theories. Agreement is quite favorable, especially with a model incorporating separation ahead of the concave corner. Reynolds number effects observed in real flows are argued to be associated with changes in the location of the outer-wall separation point. Requirements for relevancy of free-streamline models of internal flows separating at a salient edge are suggested and confirmed for cases examined.


2015 ◽  
Vol 783 ◽  
pp. 379-411 ◽  
Author(s):  
I. Marusic ◽  
K. A. Chauhan ◽  
V. Kulandaivelu ◽  
N. Hutchins

In this paper we study the spatial evolution of zero-pressure-gradient (ZPG) turbulent boundary layers from their origin to a canonical high-Reynolds-number state. A prime motivation is to better understand under what conditions reliable scaling behaviour comparisons can be made between different experimental studies at matched local Reynolds numbers. This is achieved here through detailed streamwise velocity measurements using hot wires in the large University of Melbourne wind tunnel. By keeping the unit Reynolds number constant, the flow conditioning, contraction and trip can be considered unaltered for a given boundary layer’s development and hence its evolution can be studied in isolation from the influence of inflow conditions by moving to different streamwise locations. Careful attention was given to the experimental design in order to make comparisons between flows with three different trips while keeping all other parameters nominally constant, including keeping the measurement sensor size nominally fixed in viscous wall units. The three trips consist of a standard trip and two deliberately ‘over-tripped’ cases, where the initial boundary layers are over-stimulated with additional large-scale energy. Comparisons of the mean flow, normal Reynolds stress, spectra and higher-order turbulence statistics reveal that the effects of the trip are seen to be significant, with the remnants of the ‘over-tripped’ conditions persisting at least until streamwise stations corresponding to $Re_{x}=1.7\times 10^{7}$ and $x=O(2000)$ trip heights are reached (which is specific to the trips used here), at which position the non-canonical boundary layers exhibit a weak memory of their initial conditions at the largest scales $O(10{\it\delta})$, where ${\it\delta}$ is the boundary layer thickness. At closer streamwise stations, no one-to-one correspondence is observed between the local Reynolds numbers ($Re_{{\it\tau}}$, $Re_{{\it\theta}}$ or $Re_{x}$ etc.), and these differences are likely to be the cause of disparities between previous studies where a given Reynolds number is matched but without account of the trip conditions and the actual evolution of the boundary layer. In previous literature such variations have commonly been referred to as low-Reynolds-number effects, while here we show that it is more likely that these differences are due to an evolution effect resulting from the initial conditions set up by the trip and/or the initial inflow conditions. Generally, the mean velocity profiles were found to approach a constant wake parameter ${\it\Pi}$ as the three boundary layers developed along the test section, and agreement of the mean flow parameters was found to coincide with the location where other statistics also converged, including higher-order moments up to tenth order. This result therefore implies that it may be sufficient to document the mean flow parameters alone in order to ascertain whether the ZPG flow, as described by the streamwise velocity statistics, has reached a canonical state, and a computational approach is outlined to do this. The computational scheme is shown to agree well with available experimental data.


2015 ◽  
Vol 774 ◽  
pp. 324-341 ◽  
Author(s):  
J. C. Vassilicos ◽  
J.-P. Laval ◽  
J.-M. Foucaut ◽  
M. Stanislas

The spectral model of Perryet al. (J. Fluid Mech., vol. 165, 1986, pp. 163–199) predicts that the integral length scale varies very slowly with distance to the wall in the intermediate layer. The only way for the integral length scale’s variation to be more realistic while keeping with the Townsend–Perry attached eddy spectrum is to add a new wavenumber range to the model at wavenumbers smaller than that spectrum. This necessary addition can also account for the high-Reynolds-number outer peak of the turbulent kinetic energy in the intermediate layer. An analytic expression is obtained for this outer peak in agreement with extremely high-Reynolds-number data by Hultmarket al. (Phys. Rev. Lett., vol. 108, 2012, 094501;J. Fluid Mech., vol. 728, 2013, pp. 376–395). Townsend’s (The Structure of Turbulent Shear Flows, 1976, Cambridge University Press) production–dissipation balance and the finding of Dallaset al. (Phys. Rev. E, vol. 80, 2009, 046306) that, in the intermediate layer, the eddy turnover time scales with skin friction velocity and distance to the wall implies that the logarithmic derivative of the mean flow has an outer peak at the same location as the turbulent kinetic energy. This is seen in the data of Hultmarket al. (Phys. Rev. Lett., vol. 108, 2012, 094501;J. Fluid Mech., vol. 728, 2013, pp. 376–395). The same approach also predicts that the logarithmic derivative of the mean flow has a logarithmic decay at distances to the wall larger than the position of the outer peak. This qualitative prediction is also supported by the aforementioned data.


1971 ◽  
Vol 46 (1) ◽  
pp. 43-64 ◽  
Author(s):  
J. H. Gerrard

Experiments were made on a pulsating water flow at a mean flow Reynolds number of 3770 in a cylindrical tube of diameter 3·81 cm. Pulsations were produced by a piston oscillating in simple harmonic motion with a period of 12 s. Turbulence was made visible by means of a sheet of dye produced by electrolysis from a fine wire stretched across a diameter. The sheet of dye is contorted by the turbulent eddies, and ciné-photography was used to find the velocity of convection which was shown to be the flow speed except in certain circumstances which are discussed. By subtracting the mean flow velocity profile the profile of the component of the motion oscillating at the imposed frequency was determined.The Reynolds number of these experiments lies in the turbulent transition range, so that large effects of laminarization are observed. In the turbulent phase, the velocity profile was found to possess a central plateau as does the laminar oscillating profile. The level and radial extent of this were little different from the laminar ones. Near to the wall, the turbulent oscillating profile is well represented by the mean velocity power law relationship, u/U ∝ (y/a)1/n. In the laminarized phase, the turbulent intensity is considerably reduced at this Reynolds number. The velocity profile for the whole flow (mean plus oscillating) relaxes towards the laminar profile. Laminarization contributes appreciably to the oscillating component.Extrapolation of the results to higher Reynolds numbers and different frequencies of oscillation is suggested.


2007 ◽  
Vol 580 ◽  
pp. 319-338 ◽  
Author(s):  
SCOTT C. MORRIS ◽  
SCOTT R. STOLPA ◽  
PAUL E. SLABOCH ◽  
JOSEPH C. KLEWICKI

The Reynolds number dependence of the structure and statistics of wall-layer turbulence remains an open topic of research. This issue is considered in the present work using two-component planar particle image velocimetry (PIV) measurements acquired at the Surface Layer Turbulence and Environmental Science Test (SLTEST) facility in western Utah. The Reynolds number (δuτ/ν) was of the order 106. The surface was flat with an equivalent sand grain roughness k+ = 18. The domain of the measurements was 500 < yuτ/ν < 3000 in viscous units, 0.00081 < y/δ < 0.005 in outer units, with a streamwise extent of 6000ν/uτ. The mean velocity was fitted by a logarithmic equation with a von Kármán constant of 0.41. The profile of u′v′ indicated that the entire measurement domain was within a region of essentially constant stress, from which the wall shear velocity was estimated. The stochastic measurements discussed include mean and RMS profiles as well as two-point velocity correlations. Examination of the instantaneous vector maps indicated that approximately 60% of the realizations could be characterized as having a nearly uniform velocity. The remaining 40% of the images indicated two regions of nearly uniform momentum separated by a thin region of high shear. This shear layer was typically found to be inclined to the mean flow, with an average positive angle of 14.9°.


1988 ◽  
Vol 187 ◽  
pp. 435-449 ◽  
Author(s):  
G. R. Ierley ◽  
W. V. R. Malkus

For steady-state turbulent flows with unique mean properties, we determine a sense in which the mean velocity is linearly supercritical. The shear-turbulence literature on this point is ambiguous. As an example, we reassess the stability of mean profiles in turbulent Poiseuille flow. The Reynolds & Tiederman (1967) numerical study is used as a starting point. They had constructed a class of one-dimensional flows which included, within experimental error, the observed profile. Their numerical solutions of the resulting Orr-Sommerfeld problems led them to conclude that the Reynolds number for neutral infinitesimal disturbances was twenty-five times the Reynolds number characterizing the observed mean flow. They found also that the first nonlinear corrections were stabilizing. In the realized flow, this latter conclusion appears incompatible with the former. Hence, we have sought a more complete set of velocity profiles which could exhibit linear instability, retaining the requirement that the observed velocity profile is included in the set. We have added two dynamically generated modifications of the mean. The first addition is a fluctuation in the curvature of the mean flow generated by a Reynolds stress whose form is determined by the neutrally stable Orr-Sommerfeld solution. We find that this can reduce the stability of the observed flow by as much as a factor of two. The second addition is the zero-average downstream wave associated with the above Reynolds stress. The three-dimensional linear instability of this modification can even render the observed flow unstable. Those wave amplitudes that just barely will ensure instability of the observed flow are determined. The relation of these particular amplitudes to the limiting conditions admitted by an absolute stability criterion for disturbances on the mean flow is found. These quantitative results from stability theory lie in the observationally determined Reynolds-Tiederman similarity scheme, and hence are insensitive to changes in Reynolds number.


2007 ◽  
Vol 576 ◽  
pp. 109-137 ◽  
Author(s):  
DWIGHT BARKLEY ◽  
LAURETTE S. TUCKERMAN

A turbulent–laminar banded pattern in plane Couette flow is studied numerically. This pattern is statistically steady, is oriented obliquely to the streamwise direction, and has a very large wavelength relative to the gap. The mean flow, averaged in time and in the homogeneous direction, is analysed. The flow in the quasi-laminar region is not the linear Couette profile, but results from a non-trivial balance between advection and diffusion. This force balance yields a first approximation to the relationship between the Reynolds number, angle, and wavelength of the pattern. Remarkably, the variation of the mean flow along the pattern wavevector is found to be almost exactly harmonic: the flow can be represented via only three cross-channel profiles as U(x, y, z) ≈ U0(y) + Uc(y) cos(kz) + Us(y) sin(kz). A model is formulated which relates the cross-channel profiles of the mean flow and of the Reynolds stress. Regimes computed for a full range of angle and Reynolds number in a tilted rectangular periodic computational domain are presented. Observations of regular turbulent–laminar patterns in other shear flows – Taylor–Couette, rotor–stator, and plane Poiseuille – are compared.


Sign in / Sign up

Export Citation Format

Share Document