Comparison of Wavefront Measurement Techniques on a Two-Dimensional Heated Jet

Author(s):  
Daniel Duffin ◽  
Eric Jumper ◽  
S. Gordeyev
1987 ◽  
Vol 109 (3) ◽  
pp. 218-225 ◽  
Author(s):  
R. Kress ◽  
R. Roemer

The object of this study was to devise a unified method for comparing different thermal techniques for the estimation of blood perfusion rates and to perform a comparison for several common techniques. The approach used was to develop analytical models for the temperature response for all combinations of five power deposition geometries (spherical, one- and two-dimensional cylindrical, and one- and two-dimensional Gaussian) and three transient heating techniques (temperature pulse-decay, temperature step function, and constant-power heat-up) plus one steady-state heating technique. The transient models were used to determine the range of times (the time window) when a significant portion of the transient temperature response was due to blood perfusion. This time window was defined to begin when the difference between the conduction-only and the conduction-plus-blood flow transient temperature (or power) responses exceeded a specified value, and to end when the conduction-plus-blood flow transient temperature (or power) reached a specified fraction of its steady-state value. The results are summarized in dimensionless plots showing the size of the time windows for each of the transient perfusion estimation techniques. Several conclusions were drawn, in particular: (a) low perfusions are difficult to estimate because of the dominance of conduction, (b) large heated regions are better suited for estimation of low perfusions, (c) noninvasive heating techniques are superior because they have the potential to minimize conduction effects, and (d) none of the transient techniques appears to be clearly superior to the others.


Author(s):  
Haiyan Wang ◽  
Cheng Liu ◽  
Xiaoliang He ◽  
Xingchen Pan ◽  
Shenlei Zhou ◽  
...  

AbstractThe properties of a series of phase measurement techniques, including interferometry, the Hartmann–Shack wavefront sensor, the knife-edge technique, and coherent diffraction imaging, are summarized and their performance in high power laser applications is compared. The advantages, disadvantages, and application ranges of each technique are discussed.


2017 ◽  
Vol 7 (6) ◽  
pp. 741-746 ◽  
Author(s):  
Mathilde Brossard ◽  
Harsono Cahyadi ◽  
Mathias Perrin ◽  
Jerome Degert ◽  
Eric Freysz ◽  
...  

1989 ◽  
Vol 111 (1) ◽  
pp. 20-27 ◽  
Author(s):  
R. W. Ainsworth ◽  
J. L. Allen ◽  
M. R. D. Davies ◽  
J. E. Doorly ◽  
C. J. P. Forth ◽  
...  

Transient heat transfer measurement techniques have long been used in two-dimensional stationary cascade tests designed to model turbine conditions used in Oxford. More recently, experiments studying some of the unsteady effects have been carried out using a rotating wake generator upstream of the rotor cascade. Currently work has concentrated on providing a fully three-dimensional rotating turbine stage. In an associated paper, the modifications necessary to accommodate this stage in the Oxford Isentropic Light Piston Tunnel are discussed. In this paper the developments necessary to permit the measurement of transient heat transfer under these rotating conditions are fully described.


2015 ◽  
Vol 48 (4) ◽  
pp. 1324-1329 ◽  
Author(s):  
Sander Roobol ◽  
Willem Onderwaater ◽  
Jakub Drnec ◽  
Roberto Felici ◽  
Joost Frenken

BINocularsis a tool for data reduction and analysis of large sets of surface diffraction data that have been acquired with a two-dimensional X-ray detector. The intensity of each pixel of a two-dimensional detector is projected onto a three-dimensional grid in reciprocal-lattice coordinates using a binning algorithm. This allows for fast acquisition and processing of high-resolution data sets and results in a significant reduction of the size of the data set. The subsequent analysis then proceeds in reciprocal space. It has evolved from the specific needs of the ID03 beamline at the ESRF, but it has a modular design and can be easily adjusted and extended to work with data from other beamlines or from other measurement techniques. This paper covers the design and the underlying methods employed in this software package and explains howBINocularscan be used to improve the workflow of surface X-ray diffraction measurements and analysis.


2019 ◽  
Author(s):  
◽  
Ashutosh Dahal

Magnetism has intruded in every aspect of our life, from electric motors to hard disk data storage to space technologies. Developing strong understanding of underlying magnetic properties is of utmost importance to reach new frontiers of technological advancement. During my Ph.D. research, I have explored complementary research venues in three dimensional as well as two dimensional materials to understand basic magnetic properties that were either not known or explored for the first time. In this quest, I have studied three different physical systems with overlapping structural and/or magnetic and electrical properties: nickel monosilicides (NiSi), cobalt-doped calcium ruthenate (Ca(CoxRu1-x)O3) and europium manganese arsenide (EuMn2As2). One of the key aspects of my research is to understand how magnetic moments correlate with each other. Understanding this fundamental question can help us in elucidating the mechanism behind novel magnetic proper-ties manifested by the above mentioned materials. While NiSi is found to manifest a new phenomenon of magnetism driven intermediate metallic-superconducting phase, (Ca(CoxRu1-x)O3) tends to exhibit the metal-insulator transition with the critical phase boundary coinciding with the onset of strong continuum type magnetic fluctuations. Despite the presence of strong dynamic magnetic moment correlation, no trace of any type of static magnetic order is detected in any of these materials. On the other hand, strong static order with two consecutive antiferromagnetic phase transitions are detected in the intertwined honeycomb structured EuMn2As2. During the process of studying bulk materials using macroscopic measurement techniques, I have acquired detailed knowledge of chemical synthesis methods and several experimental measurement techniques, including the analysis of magnetic susceptibility and neutron scattering methods. The gained knowledge is applied in pinpointing the low temperature magnetic phase transition in an ongoing project in the lab of two dimensional artificial magnetic (permalloy) honeycomb lattice. Two dimensional magnetic honeycomb lattice provides a unique platform to study emergent magnetic phenomena in reduced degrees of freedom. The system is expected to develop novel spin solid order at low temperature. I have performed detailed analysis of non-linear susceptibility of permalloy honeycomb lattice, which revealed the non-thermodynamic nature of phase transition to the spin solid state in this system. In the ensuing chapters, I have explained each project in great detail. A brief overview of the previous research works and the motivations behind the study is provided in the Introduction section.


Sign in / Sign up

Export Citation Format

Share Document