Effect of Leading-Edge Thickness on High-Speed Airfoil-Turbulence Interaction Noise

Author(s):  
Andre Hall ◽  
Oliver Atassi ◽  
Jonathan Gilson ◽  
Ramons Reba ◽  
Daniel Shannon
Keyword(s):  
2011 ◽  
Vol 672 ◽  
pp. 451-476 ◽  
Author(s):  
ERICH SCHÜLEIN ◽  
VICTOR M. TROFIMOV

Large-scale longitudinal vortices in high-speed turbulent separated flows caused by relatively small irregularities at the model leading edges or at the model surfaces are investigated in this paper. Oil-flow visualization and infrared thermography techniques were applied in the wind tunnel tests at Mach numbers 3 and 5 to investigate the nominally 2-D ramp flow at deflection angles of 20°, 25° and 30°. The surface contour anomalies have been artificially simulated by very thin strips (vortex generators) of different shapes and thicknesses attached to the model surface. It is shown that the introduced streamwise vortical disturbances survive over very large downstream distances of the order of 104 vortex-generator heights in turbulent supersonic flows without pressure gradients. It is demonstrated that each vortex pair induced in the reattachment region of the ramp is definitely a child of a vortex pair, which was generated originally, for instance, by the small roughness element near the leading edge. The dependence of the spacing and intensity of the observed longitudinal vortices on the introduced disturbances (thickness and spanwise size of vortex generators) and on the flow parameters (Reynolds numbers, boundary-layer thickness, compression corner angles, etc.) has been shown experimentally.


2016 ◽  
Vol 11 (1) ◽  
pp. 23-33
Author(s):  
Maxim Golubev ◽  
Andrey Shmakov

The work presents the results of application of panoramic interferential technique which is based on elastic layers (sensors) usage to obtain pressure distribution on the flat plate having sharp leading edge. Experiments were done in supersonic wind tunnel at Mach number M = 4. Sensitivity and response time are shown to be enough to register pressure pulsation against standing and traveling sensor surface waves. Applying high-frequency image acquiring is demonstrated to make possible to distinguish at visualization images high-speed disturbances propagating in the boundary layer from low-speed surface waves


Author(s):  
Fangyuan Lou ◽  
John C. Fabian ◽  
Nicole L. Key

The inception and evolution of rotating stall in a high-speed centrifugal compressor are characterized during speed transients. Experiments were performed in the Single Stage Centrifugal Compressor (SSCC) facility at Purdue University and include speed transients from sub-idle to full speed at different throttle settings while collecting transient performance data. Results show a substantial difference in the compressor transient performance for accelerations versus decelerations. This difference is associated with the heat transfer between the flow and the hardware. The heat transfer from the hardware to the flow during the decelerations locates the compressor operating condition closer to the surge line and results in a significant reduction in surge margin during decelerations. Additionally, data were acquired from fast-response pressure transducers along the impeller shroud, in the vaneless space, and along the diffuser passages. Two different patterns of flow instabilities, including mild surge and short-length-scale rotating stall, are observed during the decelerations. The instability starts with a small pressure perturbation at the impeller leading edge and quickly develops into a single-lobe rotating stall burst. The stall cell propagates in the direction opposite of impeller rotation at approximately one third of the rotor speed. The rotating stall bursts are observed in both the impeller and diffuser, with the largest magnitudes near the diffuser throat. Furthermore, the flow instability develops into a continuous high frequency stall and remains in the fully developed stall condition.


1960 ◽  
Vol 64 (596) ◽  
pp. 491-493 ◽  
Author(s):  
B. J. Elle

In a recent article, H. Werlé, has described how the free spiral vortices on delta wings with leading edge separation suddenly expand if the incidence is increased beyond a critical value. His description conforms to a great extent with the results, arrived at during an English investigation of the same phenomenon (called the vortex breakdown), but the interpretations of the observations, suggested by the two sources, are different. Against this background it is felt that some further comments and some pertinent high speed observations, may be of interest.


Author(s):  
Thomas Mosbach ◽  
Victor Burger ◽  
Barani Gunasekaran

The threshold combustion performance of different fuel formulations under simulated altitude relight conditions were investigated in the altitude relight test facility located at the Rolls-Royce plc. Strategic Research Centre in Derby, UK. The combustor employed was a twin-sector representation of an RQL gas turbine combustor. Eight fuels including conventional crude-derived Jet A-1 kerosene, synthetic paraffinic kerosenes (SPKs), linear paraffinic solvents, aromatic solvents and pure compounds were tested. The combustor was operated at sub-atmospheric air pressure of 41 kPa and air temperature of 265 K. The temperature of all fuels was regulated to 288 K. The combustor operating conditions corresponded to a low stratospheric flight altitude near 9 kilometres. The experimental work at the Rolls-Royce (RR) test-rig consisted of classical relight envelope ignition and extinction tests, and ancillary optical measurements: Simultaneous high-speed imaging of the OH* chemiluminescence and of the soot luminosity was used to visualize both the transient combustion phenomena and the combustion behaviour of the steady burning flames. Flame luminosity spectra were also simultaneously recorded with a spectrometer to obtain information about the different combustion intermediates and about the thermal soot radiation curve. This paper presents first results from the analysis of the weak extinction measurements. Further detailed test fuel results are the subject of a separate complementary paper [1]. It was found in general that the determined weak extinction parameters were not strongly dependent on the fuels investigated, however at the leading edge of the OH* chemiluminescence intensity development in the pre-flame region fuel-related differences were observed.


2021 ◽  
Author(s):  
E. J. Gunn ◽  
T. Brandvik ◽  
M. J. Wilson ◽  
R. Maxwell

Abstract This paper considers the impact of a damaged leading edge on the stall margin and stall inception mechanisms of a transonic, low pressure ratio fan. The damage takes the form of a squared-off leading edge over the upper half of the blade. Full-annulus, unsteady CFD simulations are used to explain the stall inception mechanisms for the fan at low- and high-speed operating points. A combination of steady and unsteady simulations show that the fan is predicted to be sensitive to leading edge damage at low speed, but insensitive at high speed. This blind prediction aligns well with rig test data. The difference in response is shown to be caused by the change between subsonic and supersonic flow regimes at the leading edge. Where the inlet relative flow is subsonic, rotating stall is initiated by growth and propagation of a subsonic leading edge flow separation. This separation is shown to be triggered at higher mass flow rates when the leading edge is damaged, reducing the stable flow range. Where the inlet relative flow is supersonic, the flow undergoes a supersonic expansion around the leading edge, creating a supersonic flow patch terminated by a shock on the suction surface. Rotating stall is triggered by growth of this separation, which is insensitive to leading edge shape. This creates a marked difference in sensitivity to damage at low- and high-speed operating points.


2009 ◽  
Vol 6 (4) ◽  
pp. 211-218 ◽  
Author(s):  
C. Bolzmacher ◽  
X. Riedl ◽  
J. Leuckert ◽  
M. Engert ◽  
K. Bauer ◽  
...  

Drag reduction on airfoils using arrays of micro-actuators is one application of so-called Aero-MEMS. These microactuators interact with TS instabilities (Tollmien-Schlichting waves) inside a transitional boundary layer by superimposing artificially generated counterwaves in order to delay the transition process. These actuators need to exhibit a relatively large stroke at relatively high operational frequencies when operated at high Mach numbers. For this purpose, a novel micromachined mechanical amplification unit for increasing the stroke of piezoelectric microactuators up to high frequencies is proposed. The mechanical lever is provided by a sliced nickel titanium membrane. In this work, the actuator is explained in detail and wind tunnel experiments are carried out to investigate the effect of this mechanically amplified piezoelectric microactuator on thin transitional boundary layers. The experiments have been carried out in the transonic wind tunnel facility of the Berlin University of Technology on an unswept test wing with an NACA 0004 leading edge. The effectiveness of the actuator for flow control applications is determined in an open-loop setup consisting of one actuator having a relevant spanwise extension and a microstructured hot film sensor array located downstream. The aerodynamic results at Mach 0.33 are presented and discussed. It is shown that the actuator influences TS wave specific frequencies between 2.5 kHz and 7.4 kHz. The actuator amplitude is large enough to influence a transitional boundary layer significantly without bypassing the natural transition process which makes this type of micromachined actuator a candidate for high speed TS-control.


Author(s):  
Joachim Kurzke

Realistic compressor maps are the key to high quality gas turbine performance calculations. When modeling the performance of an existing engine then these maps are usually not known and must be approximated by adapting maps from literature to either measured data or to other available information. There are many publications describing map adaptation processes, simple ones and more sophisticated physically based scaling rules. There are also reports about using statistics, genetic algorithms, neural networks and even morphing techniques for re-engineering compressor maps. This type of methods does not consider the laws of physics and consequently the generated maps are valid at best in the region in which they have been calibrated. This region is frequently very narrow, especially in case of gas generator compressors which run in steady state always on a single operating line. This paper describes which physical phenomena influence the shape of speed and efficiency lines in compressor maps. For machines operating at comparatively low speeds (so that the flow into each stage is subsonic), there is usually considerable range between choke and stall corrected flow. As the speed of the machine is increased the range narrows. For high-speed stages with supersonic relative flow into the rotor the efficiency maximum is where the speed line turns over from vertical to lower than maximum corrected flow. At this operating condition the shock is about to detach from the leading edge of the blades. The flow at a certain speed can also be limited by choking in the compressor exit guide vanes. For high pressure ratio single stage centrifugal compressors this is a normal case, but it can also happen with low pressure ratio multistage boosters of turbofan engines, for example. If the compressor chokes at the exit, then the specific work remains constant along the speed line while the overall pressure ratio varies and that generates a very specific shape of the efficiency contour lines in the map. Also in other parts of the map, the efficiency varies along speed lines in a systematic manner. Peculiar shapes of specific work and corrected torque lines can reveal physically impossibilities that are difficult to see in the standard compressor map pictures. Compressor maps generated without considering the inherent physical phenomena can easily result in misleading performance calculations if used at operating conditions outside of the region where they have been calibrated. Whatever map adaptation method is used: the maps created in such a way should be checked thoroughly for violations of the underlying laws of compressor physics.


Sign in / Sign up

Export Citation Format

Share Document