Fluid-Solid Interaction Modeling of Compressible Droplet Impact onto Elastic Substrates

2013 ◽  
Author(s):  
Seyedmohsen Najafi Marzbali ◽  
Ali Dolatabadi ◽  
Pawel Jedrzejowski
2020 ◽  
Vol 31 (08) ◽  
pp. 2050118
Author(s):  
Guannan Hao ◽  
Xiangwei Dong ◽  
Zengliang Li

Droplet impact on elastic beams is considered as a novel model of energy transfer which is a promising alternative in applications of energy harvesting. The transient impact process is dominated by the fluid–solid interaction and the capillary effect. The numerical model based on SPH method allows predicting the droplet dynamic behaviors due to super-hydrophobic (SH) surfaces. The predicted results are also compared with relevant experiments to verify the robustness and flexibility of the model. For fixed-fixed beams, typical regimes, namely spherical-shaped rebound, pancake-shaped rebound and splashing of droplet, are identified. The elasticity of beam causing the earlier lifting-off phenomenon of droplet is investigated in detail. By comparison, cantilever beams repel the droplet in a smoother way and large deformation of the beam is considered. The slipping-off phenomenon is expected to occur under specific conditions on soft cantilevers. The effect of elasticity plays a key role in the maximum deflection and oscillating frequency for both types of beams. This work examines the effectiveness of the framework based on the numerical model which provides further understandings for droplet impacts. It may lay the foundation for practical applications, such as engineering piezoelectric raindrop energy harvesters and plant leaves repelling raindrops.


2021 ◽  
pp. 107754632110233
Author(s):  
Lemiao Qiu ◽  
Guannan Su ◽  
Zili Wang ◽  
Shuyou Zhang ◽  
Lichun Zhang ◽  
...  

High-speed elevator horizontal vibration seriously affects passenger comfort. To reach the smooth operation of the high-speed elevators, it is extremely important to study the horizontal vibration of the elevator car. There are two main factors that cause the horizontal vibration of the high-speed elevator car, namely, the guidance system excitations and the car aerodynamic characteristics running in the hoistway. Under the coupling action of these two factors, the horizontal vibration of the high-speed elevator car system is aggravated. To accurately obtain the horizontal vibration information of the high-speed elevator, we developed the high-speed elevator car horizontal vibration fluid–solid interaction model. It is decoupled by the proposed fluid–solid interaction decoupling solution. The influence of the high-speed elevator running speed, the guide rail profile deviation, and the rolling guide shoe dynamic parameters on the car horizontal vibration is analyzed. To verify the feasibility of the proposed method, the 5 m/s, 7 m/s, 8 m/s, and 10 m/s high-speed elevators are applied in a 288 m test tower. The simulation accuracy using the proposed method reaches the minimum of 0.93% in 5 m/s case of the peak-to-peak value, reaches the minimum of 3.11% in 10 m/s case of the A95 value, and reaches the minimum of 0.13% in 10 m/s case of the main frequency value. In general, the compared results of the peak-to peak vibration acceleration, the A95 value, and the main frequency are all closed in both 5 m/s, 7 m/s, 8 m/s, and 10 m/s cases.


2006 ◽  
Vol 16 (8) ◽  
pp. 981-996 ◽  
Author(s):  
Richard A. Jepsen ◽  
Sam S. Yoon ◽  
Byron Demosthenous

2010 ◽  
Vol 20 (10) ◽  
pp. 909-922 ◽  
Author(s):  
Nikos Nikolopoulos ◽  
George Strotos ◽  
Konstantinos-Stephen P. Nikas ◽  
Manolis Gavaises ◽  
Andreas Theodorakakos ◽  
...  

2004 ◽  
Vol 16 (1-3) ◽  
pp. 159-164
Author(s):  
O. Lebaigue ◽  
J.-L. Estivalezes
Keyword(s):  

2021 ◽  
Vol 33 (5) ◽  
pp. 052112
Author(s):  
Hussein N. Dalgamoni ◽  
Xin Yong

Sign in / Sign up

Export Citation Format

Share Document