scholarly journals Estimation of convection speed in underexpanded jets from schlieren pictures

Author(s):  
Thomas Castelain ◽  
Romain Gojon ◽  
Bertrand Mercier ◽  
Christophe Bogey
2000 ◽  
Vol 18 (8) ◽  
pp. 887-896 ◽  
Author(s):  
P. T. Jayachandran ◽  
J. W. MacDougall

Abstract. Central polar cap convection changes associated with southward turnings of the Interplanetary Magnetic Field (IMF) are studied using a chain of Canadian Advanced Digital Ionosondes (CADI) in the northern polar cap. A study of 32 short duration (~1 h) southward IMF transition events found a three stage response: (1) initial response to a southward transition is near simultaneous for the entire polar cap; (2) the peak of the convection speed (attributed to the maximum merging electric field) propagates poleward from the ionospheric footprint of the merging region; and (3) if the change in IMF is rapid enough, then a step in convection appears to start at the cusp and then propagates antisunward over the polar cap with the velocity of the maximum convection. On the nightside, a substorm onset is observed at about the time when the step increase in convection (associated with the rapid transition of IMF) arrives at the polar cap boundary.Key words: Ionosphere (plasma convection; polar ionosphere) - Magnetospheric physics (solar wind - magnetosphere interaction)


1968 ◽  
Vol 15 (6) ◽  
pp. 1153-1157 ◽  
Author(s):  
Yu. P. Finat'ev ◽  
L. A. Shcherbakov ◽  
N. M. Gorskaya

2001 ◽  
Vol 105 (1043) ◽  
pp. 9-16 ◽  
Author(s):  
S. B. Verma ◽  
E. Rathakrishnan

Abstract The shock-structure and the related acoustic field of underexpanded jets undergoes significant changes as the Mach number Mj is increased. The present investigation is carried out to study the effect of Mach number on an underexpanded 2:1 elliptic-slot jet. Experimental data are presented for fully expanded Mach numbers ranging from 1.3 to 2.0. It is observed that the ‘cross-over’ point at the end of the first cell at low Mach numbers gets replaced by a normal shock at a highly underexpanded condition resulting in the formation of a ‘barrel’ shock along the minor-axis side with a ‘bulb’ shock formed along the major-axis side. The above change in shock structure is accompanied by a related change in the acoustic field. The amplitude of fundamental frequency along the minor-axis side grows with Mj but falls beyond Mj = 1.75. Along the major-axis side, however, the fundamental frequency does not exist at low Mach numbers. It appears at Mj = 1.75 but then falls at Mj = 2.0. The related azimuthal directivity of overall noise levels (OASPL) shows significant changes with Mj.


2018 ◽  
Vol 859 ◽  
pp. 59-88 ◽  
Author(s):  
Philip B. Kirk ◽  
Anya R. Jones

The leading-edge vortex (LEV) is a powerful unsteady flow structure that can result in significant unsteady loads on lifting blades and wings. Using force, surface pressure and flow field measurements, this work represents an experimental campaign to characterize LEV behaviour in sinusoidally surging flows with widely varying amplitudes and frequencies. Additional tests were conducted in reverse flow surge, with kinematics similar to the tangential velocity profile seen by a blade element in recent high-advance-ratio rotor experiments. General results demonstrate the variability of LEV convection properties with reduced frequency, which greatly affected the average lift-to-drag ratio in a cycle. Analysis of surface pressure measurements suggests that LEV convection speed is a function only of the local instantaneous flow velocity. In the rotor-comparison tests, LEVs formed in reverse flow surge were found to convect more quickly than the corresponding reverse flow LEVs that form on a high-advance-ratio rotor, demonstrating that rotary motion has a stabilizing effect on LEVs. The reverse flow surging LEVs were also found to be of comparable strength to those observed on the high-advance-ratio rotor, leading to the conclusion that a surging-wing simplification might provide a suitable basis for low-order models of much more complex three-dimensional flows.


Author(s):  
K-H Lee ◽  
T Setoguchi ◽  
S Matsuo ◽  
H-D Kim

The present study addresses experimental investigations of the near-field flow structures of an underexpanded sonic, dual, coaxial, swirl jet. The swirl stream is discharged from the secondary annular nozzle and the primary inner nozzle provides the underexpanded free jets. The interactions between the secondary swirl and primary underexpanded jets are quantified by a fine pitot impact and static pressure measurements and are visualized using a shadowgraph optical method. The pressure ratios of the secondary swirl and primary underexpanded jets are varied below 7.0. Experiments are conducted to investigate the effects of the secondary swirl stream on the primary underexpanded jets, compared with the secondary stream of no swirl. The results show that the presence of an annular swirl stream causes the Mach disc to move further downstream, with an increased diameter, and remarkably reduces the fluctuations of the impact pressures in the underexpanded sonic dual coaxial jet, compared with the case of the secondary annular stream with no swirl.


2013 ◽  
Vol 44 ◽  
pp. 140-154 ◽  
Author(s):  
Jingzhou Yu ◽  
Ville Vuorinen ◽  
Ossi Kaario ◽  
Teemu Sarjovaara ◽  
Martti Larmi
Keyword(s):  

Author(s):  
V. Sarohia ◽  
S. P. Parthasarathy ◽  
P. F. Massier ◽  
G. Banerian

Author(s):  
Masaki Endo ◽  
Yoko Sakakibara ◽  
Junjiro Iwamoto

An underexpanded jet is utilized in industries as well as aviation field, e.g. to cool a body by the jet impingement, to remove molten metal in laser cutting, etc. One of the biggest problems is noise radiating from the jet which has high frequency, or screech tone. It is pointed out that the noise is closely related to the structure of the jet. In this paper, the underexpanded jets on a plate and hemispheres of different radii are visualized using the shadowgraph and Schlieren methods so as to analyze the jet structure, especially the flow field above the object, or the shock region. As a result, the radius of the hemisphere is found to have an effect not on the shape greatly, but on the location of the plate shock, and furthermore on the formation of separation bubble on the surface.


Sign in / Sign up

Export Citation Format

Share Document