Guided Wave Based Damage Assessment in X-COR Composite Sandwich Structures

Author(s):  
Guoyi Li ◽  
Rajesh Kumar Neerukatti ◽  
Abhishek Rajadas ◽  
Aditi Chattopadhyay ◽  
Daniel Huff
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Viviana Meruane ◽  
Diego Aichele ◽  
Rafael Ruiz ◽  
Enrique López Droguett

The vibrational behavior of composite structures has been demonstrated as a useful feature for identifying debonding damage. The precision of the damage localization can be greatly improved by the addition of more measuring points. Therefore, full-field vibration measurements, such as those obtained using high-speed digital image correlation (DIC) techniques, are particularly useful. In this study, deep learning techniques, which have demonstrated excellent performance in image classification and segmentation, are incorporated into a novel approach for assessing damage in composite structures. This article presents a damage-assessment algorithm for composite sandwich structures that uses full-field vibration mode shapes and deep learning. First, the vibration mode shapes are identified using high-speed 3D DIC measurements. Then, Gaussian process regression is implemented to estimate the mode shape curvatures, and a baseline-free gapped smoothing method is applied to compute the damage images. The damage indices, which are represented as grayscale images, are processed using a convolutional-neural-network-based algorithm to automatically identify damaged regions. The proposed methodology is validated using numerical and experimental data from a composite sandwich panel with different damage configurations.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Siavash Shoja ◽  
Viktor Berbyuk ◽  
Anders Boström

In this study, energy transmission of the guided waves propagating in composite sandwich structures is investigated in a wide range of frequencies using numerical simulations. The effects of different potential defects on the guided wave energy transmission are explored in such structures. Furthermore, the accuracy of homogenization methods for finite element modelling of guided wave propagation in sandwich structures is studied with the aim of reducing the computational burden of the simulations in the low range of frequencies. A 2D finite element model is developed and verified by comparing the results with the dispersion curves. In order to examine homogenization methods, the homogenized stiffness matrices of the sandwich material and the laminate skin are calculated using classical laminate theory. Results show that core-skin debonding causes absence of wave energy leakage from the skin to the core material in that region in a specific range of frequencies. The results are also obtained for the delamination within the skin and compared with the healthy material. Finally, for the guided waves in the low range of frequencies, it is possible to use the homogenization methods to create the finite element models and reduce the solution time.


2021 ◽  
Vol 60 (1) ◽  
pp. 503-518
Author(s):  
Juan Han ◽  
Lu Zhu ◽  
Hai Fang ◽  
Jian Wang ◽  
Peng Wu

Abstract This article proposed an innovative composite sandwich structure reinforced with trapezoidal latticed webs with angles of 45°, 60° and 75°. Four specimens were conducted according to quasi-static compression methods to investigate the compressive behavior of the novel composite structures. The experimental results indicated that the specimen with 45° trapezoidal latticed webs showed the most excellent energy absorption ability, which was about 2.5 times of the structures with vertical latticed webs. Compared to the traditional composite sandwich structure, the elastic displacement and ultimate load-bearing capacity of the specimen with 45° trapezoidal latticed webs were increased by 624.1 and 439.8%, respectively. Numerical analysis of the composite sandwich structures was carried out by using a nonlinear explicit finite element (FE) software ANSYS/LS-DYNA. The influence of the thickness of face sheets, lattice webs and foam density on the elastic ultimate load-bearing capacity, the elastic displacement and initial stiffness was analyzed. This innovative composite bumper device for bridge pier protection against ship collision was simulated to verify its performance. The results showed that the peak impact force of the composite anti-collision device with 45° trapezoidal latticed webs would be reduced by 17.3%, and the time duration will be prolonged by about 31.1%.


Sign in / Sign up

Export Citation Format

Share Document