Validation and Verification Flight Tests of Fixed-Wing Collaborative UASs with High Speeds and High Inertias

Author(s):  
Aaron T. Blevins ◽  
A R. Kim ◽  
Daksh Shukla ◽  
Shawn S. Keshmiri ◽  
Weizhang Huang
Author(s):  
M.M. Alekseeva ◽  
N.A. Brykov ◽  
I.A. Vikhrova

Currently, the creation of new high-speed aircraft is of great interest. The development of such aircraft is associated with the need for experiments and flight tests. The organization of real physical experiments in the field of high speeds is fraught with significant difficulties that can be solved using the numerical simulation method, which makes it possible to significantly simplify the process of creating new products. When developing a high-speed aircraft, it is necessary to take into account the specific aerodynamic and thermophysical features of the processes occurring on the surface of the aircraft and in the shock layer. In this paper, the features of the processes at high speeds are considered on the example of solving the external and internal problems of the gas dynamics of an aircraft. Based on the specifics of these processes, we built a mathematical model that allows us to study the aerodynamics of a high-speed flow around a body in dense layers of the atmosphere and the processes that occur in the combustion chamber.


TAPPI Journal ◽  
2009 ◽  
Vol 8 (1) ◽  
pp. 20-26 ◽  
Author(s):  
PEEYUSH TRIPATHI ◽  
MARGARET JOYCE ◽  
PAUL D. FLEMING ◽  
MASAHIRO SUGIHARA

Using an experimental design approach, researchers altered process parameters and material prop-erties to stabilize the curtain of a pilot curtain coater at high speeds. Part I of this paper identifies the four significant variables that influence curtain stability. The boundary layer air removal system was critical to the stability of the curtain and base sheet roughness was found to be very important. A shear thinning coating rheology and higher curtain heights improved the curtain stability at high speeds. The sizing of the base sheet affected coverage and cur-tain stability because of its effect on base sheet wettability. The role of surfactant was inconclusive. Part II of this paper will report on further optimization of curtain stability with these four variables using a D-optimal partial-facto-rial design.


1988 ◽  
Vol 16 (2) ◽  
pp. 62-77 ◽  
Author(s):  
P. Bandel ◽  
C. Monguzzi

Abstract A “black box” model is described for simulating the dynamic forces transmitted to the vehicle hub by a tire running over an obstacle at high speeds. The tire is reduced to a damped one-degree-of-freedom oscillating system. The five parameters required can be obtained from a test at a given speed. The model input is composed of a series of empirical relationships between the obstacle dimensions and the displacement of the oscillating system. These relationships can be derived from a small number of static tests or by means of static models of the tire itself. The model can constitute the first part of a broader model for description of the tire and vehicle suspension system, as well as indicating the influence of tire parameters on dynamic behavior at low and medium frequencies (0–150 Hz).


2021 ◽  
Author(s):  
Guillermo Díaz García ◽  
David Seiferth ◽  
Vitus Meidinger ◽  
Daniel Dollinger ◽  
Pranav Nagarajan ◽  
...  

Alloy Digest ◽  
1976 ◽  
Vol 25 (12) ◽  

Abstract FEDERAL BRONZE 822 is a copper-base, high-lead bearing bronze with superior resistance to scoring and seizure beyond the endurance and danger limits of ordinary bearing bronzes. It is used in applications involving high speeds, poor lubrication, heat-generating loads, elevated temperatures, dusty and gritty surroundings, or where a liquid other than oil is used as the lubricant. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength as well as fracture toughness. It also includes information on casting, heat treating, machining, joining, and surface treatment. Filing Code: Cu-324. Producer or source: Federal Bronze Products Inc..


Sign in / Sign up

Export Citation Format

Share Document