Developing a Numerical Model of the Virginia Tech Stability Wind Tunnel for Uncertainty Quantification Based On Real-World Geometry

Author(s):  
Máté Szoke ◽  
Vidya Vishwanathan ◽  
Tim Loeschen ◽  
Aldo Gargiulo ◽  
Daniel J. Fritsch ◽  
...  
Author(s):  
Anchal Jatale ◽  
Philip J. Smith ◽  
Jeremy N. Thornock ◽  
Sean T. Smith ◽  
Jennifer P. Spinti ◽  
...  

Quantification of uncertainty in the simulation results becomes difficult for complex real-world systems with little or no experimental data. This paper describes a validation and uncertainty quantification (VUQ) approach that integrates computational and experimental data through a range of experimental scales and a hierarchy of complexity levels. This global approach links dissimilar experimental datasets at different scales, in a hierarchy, to reduce quantified error bars on case with sparse data, without running additional experiments. This approach was demonstrated by applying on a real-world problem, greenhouse gas (GHG) emissions from wind tunnel flares. The two-tier validation hierarchy links, a buoyancy-driven helium plume and a wind tunnel flare, to increase the confidence in the estimation of GHG emissions from wind tunnel flares from simulations.


Author(s):  
Kshitij Vadake ◽  
Jie Cui

Experimental Fluid Dynamics (EFD) and Computational Fluid Dynamics (CFD) have been instrumental in Fluid Mechanics to help solve scientific and engineering problems. This research attempts to use both techniques to perform a parametric study of turbulence flow around airfoil ClarkY-14 at various velocity and angle of attack (AoA). Clark Y-14 airfoil was designed in the 1920’s. It demonstrated good overall performance at low and moderate Reynolds numbers. With the progress in the aviation field, its performance was sub-optimal for newer aircraft designs. However, with the advent of RC airplanes and model aircrafts, there is a renewed interest in this airfoil. Various research projects have been conducted using this airfoil, but there hasn’t been a combined EFD and CFD study of the performance characteristics of the airfoil itself, which still finds real world applications today. One important aspect of this research included the investigation of the effects of a Force Measurement Device/Sensor, which is typically used in scaled/full-size wind tunnels to mount the test model as well as measure the forces/moments acting on it during the testing. The presence of such a device could affect the quality of the data obtained from the wind tunnel testing when compared to a real world application scenario where the aforementioned device may not be present. To the best of the author’s knowledge, no detailed study has been published on the effects of such devices. In this study, the results with and without the measuring device were generated by using CFD simulations. The results were then compared to see to what extent the inclusion of these devices will affect the results. The methodology used for this research was experimental as well as computational. In the present research, a commercially available CFD software STAR-CCM+ was employed to simulate the flows around airfoil Clark Y-14. The experimental data was obtained from wind tunnel tests using AEROLAB Educational Wind Tunnel (EWT) and compared with the simulation data from the CFD. The two data sets were in good agreement. Both experimental and simulation results were used to understand the effects of the measurement device/sensor used in the scaled wind tunnel on the lift and drag coefficients of the airfoil. Two separate CFD simulation setups were designed to model the presence and absence of the measurement device/sensor. These setups replicated the wind tunnel setup. The airfoil was tested and simulated at different speeds as well as different AoA. The comparative study gave a useful insight on the accuracy of the CFD simulations in relation to the actual testing. The analysis of results concluded that the force measurement device/sensor had insignificant effects on the accuracy and quality of data collected through wind tunnel testing.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Michał Lipian ◽  
Maciej Karczewski ◽  
Krzysztof Olasek

AbstractThe Diffuser Augmented Wind Turbine (DAWT) is an innovative mean to increase the power harvested by wind turbine. By encompassing the rotor with a diffusershaped duct it is possible to increase the flow speed through the turbine by about 40-50%. The study presents the development of a numerical model and its validation by the experiments performed in the wind tunnel of the Institute of Turbomachinery, TUL. Then, the numerical model is used for the geometry sensitivity study to optimize the shape of a diffuser. The paper presents that the DAWT technology has the potential to even double the power outcome of wind turbine when compared to a bare rotor version.


2020 ◽  
Vol 15 ◽  
pp. 53
Author(s):  
Olaf Klein ◽  
Daniele Davino ◽  
Ciro Visone

Parameters within hysteresis operators modeling real world objects have to be identified from measurements and are therefore subject to corresponding errors. To investigate the influence of these errors, the methods of Uncertainty Quantification (UQ) are applied. Results of forward UQ for a play operator with a stochastic yield limit are presented. Moreover, inverse UQ is performed to identify the parameters in the weight function in a Prandtl-Ishlinskiĭ operator and the uncertainties of these parameters.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1432
Author(s):  
Lev Zakhvatkin ◽  
Alex Schechter ◽  
Eilam Buri ◽  
Idit Avrahami

During aerial missions of fuel-cell (FC) powered drones, the option of FC edge cooling may improve FC performance and durability. Here we describe an edge cooling approach for fixed-wing FC-powered drones by removing FC heat using the ambient air during flight. A set of experiments in a wind tunnel and numerical simulations were performed to examine the efficiency of FC edge cooling at various flight altitudes and cruise speeds. The experiments were used to validate the numerical model and prove the feasibility of the proposed method. The first simulation duplicated the geometry of the experimental setup and boundary conditions. The calculated temperatures of the stack were in good agreement with those of the experiments (within ±2 °C error). After validation, numerical models of a drone’s fuselage in ambient air with different radiator locations and at different flight speeds (10–30 m/s) and altitudes (up to 5 km) were examined. It was concluded that onboard FC edge cooling by ambient air may be applicable for velocities higher than 10 m/s. Despite the low pressure, density, and Cp of air at high altitudes, heat removal is significantly increased with altitude at all power and velocity conditions due to lower air temperature.


2016 ◽  
Vol 7 ◽  
pp. 58
Author(s):  
Vanessa Saubke ◽  
Rüdiger Höffer

The magnitude and the spatial distribution of wind-induced net pressures (external and internal) on buildings are frequently discussed among research communities and construction industries. This paper deals with this topic based on a case study about an industrial building in Denmark, which was damaged due to the wind impact during a storm when a large part of the roof covering was blown off. In order to detect the reason for the damage the wind-induced loads were studied by i) wind tunnel experiments on the external pressures due to different wind directions, ii) analytical investigations of internal pressure due to envelope porosities and planned openings and iii) numerical analyses for the internal and the external pressure. The Reynolds averaged Navier-Stokes (RANS) method is employed to build a numerical model. The experimental, analytical and numerical results are compared with the indicated characteristic loads from the Eurocode.


1988 ◽  
Vol 43 (4) ◽  
pp. 309-343 ◽  
Author(s):  
J. R. Salmon ◽  
H. W. Teunissen ◽  
R. E. Mickle ◽  
P. A. Taylor

Author(s):  
Christoph Jessing ◽  
Daniel Stoll ◽  
Timo Kuthada ◽  
Jochen Wiedemann

Vehicle aerodynamics and wind tunnel technology are progressing towards more realistic simulations of the real-world on-road environment. This paper presents an overview of the new systems which were implemented during the recent wind tunnel upgrade at Forschungsinstitut für Kraftfahrwesenund Fahrzeugmotoren Stuttgart as well as comparable computational fluid dynamics simulations. The fully interchangeable road simulation system features an interchangeable five-belt system and three-belt system in the same full-scale automotive wind tunnel. This system offers the efficiency of a five-belt system combined with the more sophisticated ground simulation technique of a wide belt system, which is necessary to assess the aerodynamic properties of sports cars and racing cars. In order to simulate on-road wind conditions, a side-wind generator can be installed to generate a turbulent flow field in the wind tunnel test section. It could be shown that the commonly determined drag coefficient at 0° yaw angle in the smooth flow environment of today’s wind tunnels is not representative of the drag found in real on-road wind conditions. Additionally, the investigations in unsteady side-wind conditions indicate that the commonly used approach to determine the side-wind sensitivity of a vehicle underestimates the forces occurring in turbulent flow conditions. A validated simulation model is presented. The simulation results are in good agreement with the experimental results and can be used as a complementary tool when assessing the unsteady aerodynamic behaviour of a vehicle; this behaviour can be coupled to a vehicle dynamics model for virtual road testing in the Stuttgart full-motion driving simulator. The unsteady-behaviour effects can be evaluated comprehensively, and the results allow a subjective assessment of the unsteady response of the vehicle. Furthermore, the aeroacoustic wind noise in on-road wind conditions is investigated during the development of the vehicle. The side-wind generator reproduces the natural stochastic cross-wind and allows the effect of these wind conditions to be investigated in the aeroacoustic wind tunnel. The results show similar ratings to those in on-road tests when compared with subjective listening tests. In summary, the techniques introduced open up new horizons in the field of vehicle aerodynamics and aeroacoustics, which are a step closer towards real-world conditions in automotive engineering.


Sign in / Sign up

Export Citation Format

Share Document