Gust and Manoeuvre Loads Alleviation Using Lower Surface Spoiler

2022 ◽  
Author(s):  
Abdel Darwich
Keyword(s):  
1993 ◽  
Vol 17 (2) ◽  
pp. 145-160
Author(s):  
P.H. Oosthuizen ◽  
A. Sheriff

Indirect passive solar crop dryers have the potential to considerably reduce the losses that presently occur during drying of some crops in many parts of the “developing” world. The performance so far achieved with such dryers has, however, not proved to be very satisfactory. If this performance is to be improved it is necessary to have an accurate computer model of such dryers to assist in their design. An important element is any dryer model is an accurate equation for the convective heat transfer in the collector. To assist in the development of such an equation, an experimental and numerical study of the collector heat transfer has been undertaken. In the experimental study, the collector was simulated by a 1m long by 1m wide channel with a gap of 4 cm between the upper and lower surfaces. The lower surface of the channel consisted of an aluminium plate with an electrical heating element, simulating the solar heating, bonded to its lower surface. Air was blown through this channel at a measured rate and the temperature profiles at various points along the channel were measured using a shielded thermocouple probe. Local heat transfer rates were then determined from these measured temperature profiles. In the numerical study, the parabolic forms of the governing equations were solved by a forward-marching finite difference procedure.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 446
Author(s):  
Miriam González-Castaño ◽  
Estelle le Saché ◽  
Cameron Berry ◽  
Laura Pastor-Pérez ◽  
Harvey Arellano-García ◽  
...  

This work establishes the primordial role played by the support’s nature when aimed at the constitution of Ni2P active phases for supported catalysts. Thus, carbon dioxide reforming of methane was studied over three novel Ni2P catalysts supported on Al2O3, CeO2 and SiO2-Al2O3 oxides. The catalytic performance, shown by the catalysts’ series, decreased according to the sequence: Ni2P/Al2O3 > Ni2P/CeO2 > Ni2P/SiO2-Al2O3. The depleted CO2 conversion rates discerned for the Ni2P/SiO2-Al2O3 sample were associated to the high sintering rates, large amounts of coke deposits and lower fractions of Ni2P constituted in the catalyst surface. The strong deactivation issues found for the Ni2P/CeO2 catalyst, which also exhibited small amounts of Ni2P species, were majorly associated to Ni oxidation issues. Along with lower surface areas, oxidation reactions might also affect the catalytic behaviour exhibited by the Ni2P/CeO2 sample. With the highest conversion rate and optimal stabilities, the excellent performance depicted by the Ni2P/Al2O3 catalyst was mostly related to the noticeable larger fractions of Ni2P species established.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 543 ◽  
Author(s):  
Tzu-Yu Peng ◽  
Saiji Shimoe ◽  
Lih-Jyh Fuh ◽  
Chung-Kwei Lin ◽  
Dan-Jae Lin ◽  
...  

Poly(aryl–ether–ketone) materials (PAEKs) are gaining interest in everyday dental practices because of their natural properties. This study aims to analyze the bonding performance of PAEKs to a denture acrylic. Testing materials were pretreated by grinding, sandblasting, and priming prior to polymerization with the denture acrylic. The surface morphologies were observed using a scanning electron microscope and the surface roughness was measured using atomic force microscopy. The shear bond strength (SBS) values were determined after 0 and 2500 thermal cycles. The obtained data were analyzed using a paired samples t-test and Tukey’s honestly significant difference (HSD) test (α = 0.05). The surface characteristics of testing materials after different surface pretreatments showed obvious differences. PAEKs showed lower surface roughness values (0.02–0.03 MPa) than Co-Cr (0.16 MPa) and zirconia (0.22 MPa) after priming and sandblasting treatments (p < 0.05). The SBS values of PAEKs (7.60–8.38 MPa) met the clinical requirements suggested by ISO 10477 (5 MPa). Moreover, PAEKs showed significantly lower SBS reductions (p < 0.05) after thermal cycling fatigue testing compared to Co-Cr and zirconia. Bonding performance is essential for denture materials, and our results demonstrated that PAEKs possess good resistance to thermal cycling fatigue, which is an advantage in clinical applications. The results imply that PAEKs are potential alternative materials for the removable of prosthetic frameworks.


2021 ◽  
pp. 096739112110230
Author(s):  
Meltem Sezen ◽  
Busra Tugba Camic

The emphasis of biocompatible polymer applications in medical sciences and biotechnology has remarkably increased. Developing new low-cost, low-toxicity and lightweight composite forms of biopolymers has become even more attractive since the addition of new species into polymer matrices assist to improve biomedical activities of such materials to a higher extend. Developments in nanoscience and nanotechnology recently contribute to controlled fabrication and ultraprecise diagnosis of such materials. This study concerns the observation of solution processing effects in the fabrication of porous PLA/AGNWs bionanocomposite coatings using electron and ion processing based serial cross-sectioning and high-resolution imaging. The nanostructuring and characterization were both performed in a focused ion-beam-scanning electron microscope (FIB-SEM) platform. HR-SEM imaging was conducted on-site to track solvent based morphological property alterations of PLA and PLA/AgNWs structures. Simultaneous SEM-EDS analyses revealed the elemental distribution and the chemical composition along the cross-sectioned regions of the samples. Accordingly, it was observed that, in case of acetone dissolved materials, both pristine PLA and PLA/AgNWs samples sustained their foamy structure. When chloroform was used as the solvent, the porosity of the polymer matrices was less and the resulting structure was found to be denser than samples dissolved in acetone with a lower surface area ratio inside the material. This can be attributed to the rapid volatilization of acetone compared to chloroform, and hence the formation of interconnected pore network. For both nanocomposite biopolymers dissolved in acetone and chloroform, silver nanowires were homogeneously distributed throughout PLA matrices.


2018 ◽  
Vol 7 (4.38) ◽  
pp. 1376
Author(s):  
Pornnipa Khaosomboon ◽  
Kulyakorn Khuanmar ◽  
Panomchai Weerayutsil

The purpose of this research was to synthesize zeolite-A (Ze-A) and zeolite-Y (Ze-Y) using silica sources from silica gel waste, and also improving adsorption capacity with Fe which was trapped in the synthesized zeolites:  Ze-Fe-A and Ze-Fe-Y. All synthesized zeolites were tested with lead solution of 40 mg/L at pH 5. For BET specific surface area, the parent Ze-A and Ze-Y presented surface area of 27.02 and 211.42 m2/g, respectively, whereas Ze-Fe-A and Ze-Fe-Y presented a lower surface area of 10.90 and 28.22 m2/g, respectively. SEM and TEM image demonstrated the cubic and polygon shapes for Ze-A and Ze-Y, respectively, while their modification with Fe presented more round shape. Additionally, both modified zeolites with Fe presented higher adsorption efficiency than their parents. Although the modified zeolites gave lower surface area, the efficiency removal of lead showed higher capacity than zeolite without Fe. It could be concluded that the adsorption mechanism of modified zeolites did not only rely on physical adsorption, but also on chemical adsorption.      


1993 ◽  
Vol 137 ◽  
pp. 162-164 ◽  
Author(s):  
V. Wenske ◽  
D. Schönberner

For several years it has become quite common to derive stellar parameters like effective temperature, Teff, and surface acceleration, g, by means of properly calibrated photometric indices, and to use these values for the derivation of important properties of stellar aggregates (viz. ages, star formation history, distances, etc.). Photometric observations, however, fail to give informations about one important property of a star: its rotational rate!The main effect of rotation is to increase the size of the star, mainly in the equatorial region, leading to lower surface temperatures and accelerations. Since in non–spherical stars Teff and g depend on the latitude, the observed values, which are, of course, averages over the visible hemisphere, depend on the angle of inclination, i. Collins & Sonneborn (1977) utilized the rigidly rotating stellar models of Sackmann and Anand (1970) to compute emergent fluxes and photometric indices for various stellar masses, inclination angles i and rotational parameters being the break–up rotational rate. These indices, viz. C0 and β, represent then averages over the visible part of the rotally distorted stellar models. Closer inspections indicated also that emergent fluxes and line profiles of rotationally distorted stars can be matched by the predictations of standard model atmospheres to a very high accuray, even for w close to unity (Wenske 1992, Diplom Thesis).


2014 ◽  
Vol 606 ◽  
pp. 229-232 ◽  
Author(s):  
Petr Tej ◽  
Vítězslav Vacek ◽  
Jiří Kolísko ◽  
Jindřich Čech

The paper focuses on a computer nonlinear analysis of the formation and development of cracks in a concrete slab exposed to a uniform continuous load on the lower surface. The analysis is based on an actual example of the formation and development of cracks in a basement slab exposed to ground water buoyancy.


Sign in / Sign up

Export Citation Format

Share Document