Cross-sectional microanalysis for tracking the effect of solvent on the morphological evaluation of PLA/AgNWs bionanocomposties

2021 ◽  
pp. 096739112110230
Author(s):  
Meltem Sezen ◽  
Busra Tugba Camic

The emphasis of biocompatible polymer applications in medical sciences and biotechnology has remarkably increased. Developing new low-cost, low-toxicity and lightweight composite forms of biopolymers has become even more attractive since the addition of new species into polymer matrices assist to improve biomedical activities of such materials to a higher extend. Developments in nanoscience and nanotechnology recently contribute to controlled fabrication and ultraprecise diagnosis of such materials. This study concerns the observation of solution processing effects in the fabrication of porous PLA/AGNWs bionanocomposite coatings using electron and ion processing based serial cross-sectioning and high-resolution imaging. The nanostructuring and characterization were both performed in a focused ion-beam-scanning electron microscope (FIB-SEM) platform. HR-SEM imaging was conducted on-site to track solvent based morphological property alterations of PLA and PLA/AgNWs structures. Simultaneous SEM-EDS analyses revealed the elemental distribution and the chemical composition along the cross-sectioned regions of the samples. Accordingly, it was observed that, in case of acetone dissolved materials, both pristine PLA and PLA/AgNWs samples sustained their foamy structure. When chloroform was used as the solvent, the porosity of the polymer matrices was less and the resulting structure was found to be denser than samples dissolved in acetone with a lower surface area ratio inside the material. This can be attributed to the rapid volatilization of acetone compared to chloroform, and hence the formation of interconnected pore network. For both nanocomposite biopolymers dissolved in acetone and chloroform, silver nanowires were homogeneously distributed throughout PLA matrices.

2018 ◽  
Author(s):  
Sang Hoon Lee ◽  
Jeff Blackwood ◽  
Stacey Stone ◽  
Michael Schmidt ◽  
Mark Williamson ◽  
...  

Abstract The cross-sectional and planar analysis of current generation 3D device structures can be analyzed using a single Focused Ion Beam (FIB) mill. This is achieved using a diagonal milling technique that exposes a multilayer planar surface as well as the cross-section. this provides image data allowing for an efficient method to monitor the fabrication process and find device design errors. This process saves tremendous sample-to-data time, decreasing it from days to hours while still providing precise defect and structure data.


Author(s):  
Ching Shan Sung ◽  
Hsiu Ting Lee ◽  
Jian Shing Luo

Abstract Transmission electron microscopy (TEM) plays an important role in the structural analysis and characterization of materials for process evaluation and failure analysis in the integrated circuit (IC) industry as device shrinkage continues. It is well known that a high quality TEM sample is one of the keys which enables to facilitate successful TEM analysis. This paper demonstrates a few examples to show the tricks on positioning, protection deposition, sample dicing, and focused ion beam milling of the TEM sample preparation for advanced DRAMs. The micro-structures of the devices and samples architectures were observed by using cross sectional transmission electron microscopy, scanning electron microscopy, and optical microscopy. Following these tricks can help readers to prepare TEM samples with higher quality and efficiency.


Author(s):  
Jian-Shing Luo ◽  
Hsiu Ting Lee

Abstract Several methods are used to invert samples 180 deg in a dual beam focused ion beam (FIB) system for backside milling by a specific in-situ lift out system or stages. However, most of those methods occupied too much time on FIB systems or requires a specific in-situ lift out system. This paper provides a novel transmission electron microscopy (TEM) sample preparation method to eliminate the curtain effect completely by a combination of backside milling and sample dicing with low cost and less FIB time. The procedures of the TEM pre-thinned sample preparation method using a combination of sample dicing and backside milling are described step by step. From the analysis results, the method has applied successfully to eliminate the curtain effect of dual beam FIB TEM samples for both random and site specific addresses.


Author(s):  
Chuan Zhang ◽  
Jane Y. Li ◽  
John Aguada ◽  
Howard Marks

Abstract This paper introduces a novel sample preparation method using plasma focused ion-beam (pFIB) milling at low grazing angle. Efficient and high precision preparation of site-specific cross-sectional samples with minimal alternation of device parameters can be achieved with this method. It offers the capability of acquiring a range of electrical characteristic signals from specific sites on the cross-section of devices, including imaging of junctions, Fins in the FinFETs and electrical probing of interconnect metal traces.


Author(s):  
T. Yaguchi ◽  
M. Konno ◽  
T. Kamino ◽  
M. Ogasawara ◽  
K. Kaji ◽  
...  

Abstract A technique for preparation of a pillar shaped sample and its multi-directional observation of the sample using a focused ion beam (FIB) / scanning transmission electron microscopy (STEM) system has been developed. The system employs an FIB/STEM compatible sample rotation holder with a specially designed rotation mechanism, which allows the sample to be rotated 360 degrees [1-3]. This technique was used for the three dimensional (3D) elemental mapping of a contact plug of a Si device in 90 nm technology. A specimen containing a contact plug was shaped to a pillar sample with a cross section of 200 nm x 200 nm and a 5 um length. Elemental analysis was performed with a 200 kV HD-2300 STEM equipped with the EDAX genesis Energy dispersive X-ray spectroscopy (EDX) system. Spectrum imaging combined with multivariate statistical analysis (MSA) [4, 5] was used to enhance the weak X-ray signals of the doped area, which contain a low concentration of As-K. The distributions of elements, especially the dopant As, were successfully enhanced by MSA. The elemental maps were .. reconstructed from the maps.


1998 ◽  
Vol 4 (S2) ◽  
pp. 860-861 ◽  
Author(s):  
A. Ramirez de Arellano López ◽  
W.-A. Chiou ◽  
K. T. Faber

The results of TEM analyses of materials are critically dependent on the quality of the sample prepared. Although numerous techniques have been developed in the last two decades, differential thinning of inhomogeneous materials remains a serious problem. Recently, focused ion beam (FIB) technique has been introduced for cross-sectional sample preparation for TEM and SEM.A novel system for depositing a fine-grain (∼ 200 nm) ceramic coating on a metal surface via a patent pending Small-Particle Plasma Spray (SPPS) technique has been developed at the Basic Industry Research Laboratory of Northwestern University. To understand the properties of the coated surface, the ceramic/metal interface and the microstructure of the ceramic coating must be investigated. This paper presents a comparison of the microstructure of an A12O3 coating on a mild steel substrate prepared using conventional and FEB techniques.


2021 ◽  
Author(s):  
Andrea Bernardini ◽  
Marco Trovatelli ◽  
Michal Klosowski ◽  
Matteo Pederzani ◽  
Davide Zani ◽  
...  

Abstract There is an increased need and focus to understand how local brain microstructure affects the transport of drug molecules directly administered to the brain tissue, for example in convection-enhanced delivery procedures. This study reports the first systematic attempt to characterize the cytoarchitecture of commissural, long association and projection fibers, namely: the corpus callosum, the fornix and the corona radiata. Ovine samples from three different subjects were stained with osmium tetroxide (to enhance contrast from cell organelles and the fibers), embedded in resin and then imaged using scanning electron microscope combined with focused ion beam milling to generate 3D volume reconstructions of the tissue at subcellular spatial resolution. Particular focus has been given to the characteristic cytological feature of the white matter: the axons and their alignment in the tissue. Via 2D images a homogeneous myelination has been estimated via detection of ~40% content of lipids in all the different fiber tracts. Additionally, for each tract, a 3D reconstruction of relatively large volumes (15μm x 15μm x 15μm – including a significant number of axons) has been performed. Namely, outer axonal ellipticity, outer axonal cross-sectional area and their relative perimeter have been measured. The study of well-resolved microstructural features provides useful insight into the fibrous organization of the tissue, whose micromechanical behaviour is that of a composite material presenting elliptical tortuous tubular fibers embedded in the extra-cellular matrix. Drug flow can be captured through microstructurally-based models, leading to a workflow to enable physically-accurate simulations of drug delivery to the targeted tissue.


2001 ◽  
Vol 7 (3) ◽  
pp. 287-291
Author(s):  
Toshie Yaguchi ◽  
Hiroaki Matsumoto ◽  
Takeo Kamino ◽  
Tohru Ishitani ◽  
Ryoichi Urao

AbstractIn this study, we discuss a method for cross-sectional thin specimen preparation from a specific site using a combination of a focused ion beam (FIB) system and an intermediate voltage transmission electron microscope (TEM). A FIB-TEM compatible specimen holder was newly developed for the method. The thinning of the specimen using the FIB system and the observation of inside structure of the ion milled area in a TEM to localize a specific site were alternately carried out. The TEM fitted with both scanning transmitted electron detector and secondary electron detector enabled us to localize the specific site in a halfway milled specimen with the positional accuracy of better than 0.1 µm. The method was applied to the characterization of a precipitate in a steel. A submicron large precipitate was thinned exactly at its center for the characterization by a high-resolution electron microscopy and an elemental mapping.


2003 ◽  
Vol 777 ◽  
Author(s):  
B.J. Inkson ◽  
G. Dehm

AbstractPt nanowires have been produced by FIB deposition of Pt thin films in a commercial Ga+ focused ion beam (FIB) system, followed by cross-sectional sputtering to form electron transparent Pt nanowires. The thermal stability of amorphous FIB manufactured Pt wires has been investigated by in-situ thermal cycling in a TEM. The Pt wires are stable up to 580-650°C where partial crystallization is observed in vacuum. Facetted nanoparticles grow on the wire surface, growing into free space by surface diffusion and minimising contact area with the underlying wire. The particles are fcc Pt with some dissolved Ga. Continued heating results in particle spheroidization, coalescence and growth, retaining the fcc structure.


Sign in / Sign up

Export Citation Format

Share Document