Co-Delivery of Multiple Small Probes to the Martian Surface

2022 ◽  
Author(s):  
Samuel W. Albert ◽  
Hanspeter Schaub ◽  
Robert D. Braun
Keyword(s):  
2005 ◽  
Vol 29 (4) ◽  
pp. 507-517
Author(s):  
Alex Ellery ◽  
Lutz Richter ◽  
Reinhold Bertrand

The European Space Agency’s (ESA) ExoMars rover has recently been subject to a Phase A study led by EADS Astrium, UK. This rover mission represents a highly ambitious venture in that the rover is of considerable size ~200+kg with high mobility carrying a highly complex scientific instrument suite (Pasteur) of up to 40 kg in mass devoted to exobiological investigation of the Martian surface and sub-surface. The chassis design has been a particular challenge given the inhospitable terrain on Mars and the need to traverse such terrain robustly in order to deliver the scientific instruments to science targets of exobiological interest, We present some of the results and design issues encountered during the Phase A study related to the chassis. In particular, we have focussed on the overall tractive performance of a number of candidate chassis designs and selected the RCL (Science & Technology Rover Company Ltd in Russian) concept C design as the baseline option in terms of high performance with minimal mechanical complexity overhead. This design is a six-wheeled double-rocker bogie design to provide springless suspension and maintain approximately equal weight distribution across each wheel.


Icarus ◽  
1965 ◽  
Vol 4 (1) ◽  
pp. 108-109 ◽  
Author(s):  
D.G. Rea
Keyword(s):  

2021 ◽  
Vol 10 (2) ◽  
pp. 56
Author(s):  
Siwei Lin ◽  
Nan Chen

Solar radiation may be shielded by the terrain relief before reaching the Martian surface, especially over some rugged terrains. Yet, to date, no comprehensive studies on the spatial structure of shielded astronomical solar radiation (SASR) and the possible sunshine duration (PSD) on Mars have been conducted by previous researchers. Previous studies generally ignored the influences of the terrain on the SASR and PSD, which resulted in a corresponding unexplored field on SASR. The purpose of this paper is to study the Martian spatial-temporal structure of SASR and the PSD under terrain influences. In this paper, the theory of Earth’s SASR, the previous Martian SASR model and the theory of planetary science were combined to propose the SASR model that can be applied to Mars. Then, with the spectrum method theory of geography, we defined two new concepts of spectrums to explore the spatial-temporal distribution of SASR and PSD in different Martian landforms. We found SASR and PSD on Mars were significantly influenced by terrain relief and latitude and showed sufficient regularity, which can be concluded as a gradual attenuation with terrain relief and a regularity of latitude anisotropy. The latitude anisotropy feature is a manifestation of the terrain shielding effect. With the latitude varying, SASR and PSD at different temporal scale generally showed different features with those of Earth, which may be attributed to the imbalanced seasons caused by Martian moving orbits and velocity. Compared to PSD, SASR showed more regular variation under terrain relief and was more influenced by the terrain relief which revealed that SASR is more sensitive to terrain relief than PSD. Additionally, the critical area is a quantitative index to reflect the stable spatial structure of SASR and PSD in different landforms and may be viewed as the minimum test region of sample areas. The corresponding result of the experiments herein indicated that either spectrum can effectively depict the spatial-temporal distribution of SASR and PSD on Mars under terrain relief and deepen the understanding of the variation of SASR and PSD influences by terrain. The critical area of either spectrum can be employed to explore and determine the stable spatial structure of SASR and PSD in different landforms. The proposed Martian SASR model and the new spectral method theory shed new light on revealing the spatial-temporal structure of SASR and PSD under terrain influences on Mars.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 176
Author(s):  
Ryoichi Nakada ◽  
Gaku Tanabe ◽  
Iori Kajitani ◽  
Tomohiro Usui ◽  
Masashi Shidare ◽  
...  

The aqueous environment of ancient Mars is of significant interest because of evidence suggesting the presence of a large body of liquid water on the surface at ~4 Ga, which differs significantly from the modern dry and oxic Martian environment. In this study, we examined the Fe-bearing minerals in the 4 Ga Martian meteorite, Alan Hills (ALH) 84001, to reveal the ancient aqueous environment present during the formation of this meteorite. Extended X-ray absorption fine structure (EXAFS) analysis was conducted to determine the Fe species in ALH carbonate and silica glass with a high spatial resolution (~1–2 μm). The μ-EXAFS analysis of ALH carbonate showed that the Fe species in the carbonate were dominated by a magnesite-siderite solid solution. Our analysis suggests the presence of smectite group clay in the carbonate, which is consistent with the results of previous thermochemical modeling. We also found serpentine in the silica glass, indicating the decrease of water after the formation of carbonate, at least locally. The possible allochthonous origin of the hematite in the carbonate suggests a patchy redox environment on the ancient Martian surface.


Science ◽  
1976 ◽  
Vol 193 (4255) ◽  
pp. 805-809 ◽  
Author(s):  
RICHARD W. SHORTHILL ◽  
ROBERT E. HUTTON ◽  
HENRY J. MOORE ◽  
RONALD F. SCOTT ◽  
CARY R. SPITZER

2010 ◽  
Vol 37 (12) ◽  
pp. n/a-n/a ◽  
Author(s):  
G. Jeffrey Taylor ◽  
William V. Boynton ◽  
Scott M. McLennan ◽  
Linda M. V. Martel

2021 ◽  
Vol 217 (6) ◽  
Author(s):  
Wei Yan ◽  
Jianjun Liu ◽  
Xin Ren ◽  
Chunlai Li ◽  
Qiang Fu ◽  
...  

AbstractHigh-resolution optical cameras have always been important scientific payloads in Mars exploration missions, which can obtain detailed images of Martian surface for the study of geomorphology, topography and geological structure. At present, there are still many challenges for Mars high-resolution images in terms of global coverage, stereo coverage (especially for colour images), and data processing methods. High Resolution Imaging Camera (HiRIC) is a high-quality, multi-mode, multi-functional, multi-spectral remote sensing camera that is suitable for the deep space developed for China’s first Mars Exploration Mission (Tianwen-1), which was successfully launched in July 2020. Here we design special experiments based on the in-orbit detection conditions of Tianwen-1 mission to comprehensively verify the detection capability and the performance of HiRIC, from the aspects of image motion compensation effect, focusing effect, image compression quality, and data preprocessing accuracy. The results showed that the performance status of HiRIC meets the requirements of obtaining high resolution images on the Martian surface. Furthermore, proposals for HiRIC in-orbit imaging strategy and data processing are discussed to ensure the acquisition of high-quality HiRIC images, which is expected to serve as a powerful complementation to the current Mars high-resolution images.


Sign in / Sign up

Export Citation Format

Share Document