scholarly journals Determination of Adhesion and Colonisation Intensity of Staphylococcus epidermidis and Pseudomonas aeruginosa on the Surface of Originally Synthesised Biomaterials in vitro and in vivo Studies, and Their Impact on Inflammatory Cytokine Expression in Tissues. Summary of the Doctoral Thesis

Author(s):  
◽  
Reinis Aigars
2021 ◽  
pp. 088532822110038
Author(s):  
Mohammad Yousef Memar ◽  
Mina Yekani ◽  
Hadi Ghanbari ◽  
Edris Nabizadeh ◽  
Sepideh Zununi Vahed ◽  
...  

The aims of the present study were the determination of antimicrobial and antibiofilm effects of meropenem-loaded mesoporous silica nanoparticles (MSNs) on carbapenem resistant Pseudomonas aeruginosa ( P. aeruginosa) and cytotoxicity properties in vitro. The meropenem-loaded MSNs had shown antibacterial and biofilm inhibitory activities on all isolates at different levels lower than MICs and BICs of meropenem. The viability of HC-04 cells treated with serial concentrations as MICs and BICs of meropenem-loaded MSNs was 92–100%. According to the obtained results, meropenem-loaded MSNs display the significant antibacterial and antibiofilm effects against carbapenem resistant and biofilm forming P. aeruginosa and low cell toxicity in vitro. Then, the prepared system can be an appropriate option for the delivery of carbapenem for further evaluation in vivo assays.


2014 ◽  
Vol 244 ◽  
pp. 85-91 ◽  
Author(s):  
Moonhee Jang ◽  
Ilchung Shin ◽  
Wonkyung Yang ◽  
Hyejin Chang ◽  
Hye Hyun Yoo ◽  
...  
Keyword(s):  

1999 ◽  
Vol 67 (6) ◽  
pp. 2783-2789 ◽  
Author(s):  
Lakshmyya Kesavalu ◽  
Stanley C. Holt ◽  
Jeffrey L. Ebersole

ABSTRACT This investigation examined the effects of environmental alteration on the virulence of the oral treponemes Treponema denticolaand Treponema pectinovorum. The environmental effects were assessed by using a model of localized inflammatory abscesses in mice. In vitro growth of T. denticola and T. pectinovorum as a function of modification of the cysteine concentration significantly enhanced abscess formation and size. In contrast, growth of T. denticola or T. pectinovorum under iron-limiting conditions (e.g., dipyridyl chelation) had no effect on abscess induction in comparison to that when the strains were grown under normal iron conditions. In vivo modulation of the microenvironment at the focus of infection with Cytodex beads demonstrated that increasing the local inflammation had no effect on lesion induction or size. In vivo studies involved the determination of the effects of increased systemic iron availability (e.g., iron dextran or phenylhydrazine) on the induction, kinetics, and size of lesions. T. denticola induced significantly larger lesions in mice with iron pretreatment and demonstrated systemic manifestations of the infectious challenge and an accompanying spreading lesion with phenylhydrazine pretreatment (e.g., increases in circulating free hemoglobin). In contrast, T. pectinovorum virulence was minimally affected by this in vivo treatment to increase iron availability. T. denticolavirulence, as evaluated by lesion size, was increased additively by in vivo iron availability, and cysteine modified growth of the microorganism. Additionally, galactosamine sensitized mice to a lethal outcome following infection with both T. denticola andT. pectinovorum, suggesting an endotoxin-like activity in these treponemes. These findings demonstrated the ability to modify the virulence capacity of T. denticola andT. pectinovorum by environmental conditions which can be evaluated by using in vivo murine models.


2018 ◽  
Vol 56 ◽  
pp. 135-142 ◽  
Author(s):  
Jeong-Min Lim ◽  
Bina Lee ◽  
Ju-Hee Min ◽  
Eun-Young Kim ◽  
Jae-Hyun Kim ◽  
...  

2014 ◽  
Vol 7 (6) ◽  
pp. 1516-1520 ◽  
Author(s):  
LINGQING XU ◽  
FENG WANG ◽  
YIN SHEN ◽  
HONGYAN HOU ◽  
WEIYONG LIU ◽  
...  

2007 ◽  
Vol 27 (1-3) ◽  
pp. 151-163 ◽  
Author(s):  
M. C. Lara ◽  
M. L. Valentino ◽  
J. Torres-Torronteras ◽  
M. Hirano ◽  
R. Martí

Over the last 15 years, important research has expanded our knowledge of the clinical, molecular genetic, and biochemical features of mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). The characterization of mitochondrial involvement in this disorder and the seminal determination of its genetic cause, have opened new possibilities for more detailed and deeper studies on the pathomechanisms in this progressive and fatal disease. It has been established that MNGIE is caused by mutations in the gene encoding thymidine phosphorylase (TP), which lead to absolute or nearly complete loss of its catalytic activity, producing systemic accumulations of its substrates, thymidine (dThd) and deoxyuridine (dUrd). Findings obtained from in vitro and in vivo studies indicate that the biochemical imbalances specifically impair mitochondrial DNA (mtDNA) replication, repair, or both leading to mitochondrial dysfunction. We have proposed that therapy for MNGIE should be aimed at reducing the concentrations of these toxic nucleosides to normal or nearly normal levels. The first treatment, allogeneic stem-cell transplantation (alloSCT) reported in 2006, produced a nearly full biochemical correction of the dThd and dUrd imbalances in blood. Clinical follow-up of this and other patients receiving alloSCT is necessary to determine whether this and other therapies based on a permanent restoration of TP will be effective treatment for MNGIE.


2021 ◽  
Vol 22 (6) ◽  
pp. 2949
Author(s):  
Anna Iwaniak ◽  
Damir Mogut ◽  
Piotr Minkiewicz ◽  
Justyna Żulewska ◽  
Małgorzata Darewicz

In silico and in vitro methods were used to analyze ACE- and DPP-IV-inhibiting potential of Gouda cheese with a modified content of β-casein. Firstly, the BIOPEP-UWM database was used to predict the presence of ACE and DPP-IV inhibitors in casein sequences. Then, the following Gouda cheeses were produced: with decreased, increased, and normative content of β-casein after 1 and 60 days of ripening each (six variants in total). Finally, determination of the ACE/DPP-IV-inhibitory activity and the identification of peptides in respective Gouda-derived water-soluble extracts were carried out. The identification analyses were supported with in silico calculations, i.e., heatmaps and quantitative parameters. All Gouda variants exhibited comparable ACE inhibition, whereas DPP-IV inhibition was more diversified among the samples. The samples derived from Gouda with the increased content of β-casein (both stages of ripening) had the highest DPP-IV-inhibiting potency compared to the same samples measured for ACE inhibition. Regardless of the results concerning ACE and DPP-IV inhibition among the cheese samples, the heatmap showed that the latter bioactivity was predominant in all Gouda variants, presumably because it was based on the qualitative approach (i.e., peptide presence in the sample). Our heatmap did not include the bioactivity of a single peptide as well as its quantity in the sample. In turn, the quantitative parameters showed that the best sources of ACE/DPP-IV inhibitors were all Gouda-derived extracts obtained after 60 days of the ripening. Although our protocol was efficient in showing some regularities among Gouda cheese variants, in vivo studies are recommended for more extensive investigations of this subject.


2019 ◽  
Vol 60 (8) ◽  
pp. 2978
Author(s):  
Linda D. Hazlett ◽  
Sandamali A. Ekanayaka ◽  
Sharon A. McClellan ◽  
Rebecca Francis

Sign in / Sign up

Export Citation Format

Share Document