Effect of peiminine on DNCB-induced atopic dermatitis by inhibiting inflammatory cytokine expression in vivo and in vitro

2018 ◽  
Vol 56 ◽  
pp. 135-142 ◽  
Author(s):  
Jeong-Min Lim ◽  
Bina Lee ◽  
Ju-Hee Min ◽  
Eun-Young Kim ◽  
Jae-Hyun Kim ◽  
...  
2020 ◽  
Vol 15 (3) ◽  
pp. 194-208
Author(s):  
Pravin Kumar ◽  
Dinesh Kumar Sharma ◽  
Mahendra Singh Ashawat

Atopic Dermatitis (AD) is a prolonged reverting skin ailment with characteristically distributed skin lesions. In the previous decades, researchers had shown a marked interest in AD due to its increased prevalence in developed countries. Although different strategies including biological and immune modulators are available for the treatment of AD, each has certain limitations. The researchers had shown considerable interest in the management of AD with herbal medicines. The establishment of herbal drugs for AD might eliminate local as well as systemic adverse effects associated with long term use of corticosteroids and also higher cost of therapy with biological drugs. The present review discusses the traditional East Asian herbal medicines and scientific data related to newer herbal extracts or compositions for the treatment of AD. In vivo animal models and in vitro cell cultures, investigated with herbal medicines to establish a possible role in AD treatment, have also been discussed in the paper. The paper also highlights the role of certain new approaches, i.e. pharmacopuncture, a combination of allopathic and herbal medicines; and novel carriers (liposomes, cubosomes) for herbal drugs on atopic skin. In conclusion, herbal medicines can be a better and safe, complementary and alternative treatment option for AD.


2009 ◽  
Vol 15 (3) ◽  
pp. 168-173 ◽  
Author(s):  
Hiromi Ogino ◽  
Miho Fujii ◽  
Mariko Ono ◽  
Kayoko Maezawa ◽  
Junko Kizu ◽  
...  

2022 ◽  
Vol 23 (1) ◽  
pp. 553
Author(s):  
Ga-Yul Min ◽  
Ji-Hye Kim ◽  
Tae-In Kim ◽  
Won-Kyung Cho ◽  
Ju-Hye Yang ◽  
...  

Atopic dermatitis (AD) is a chronic inflammatory skin disease associated with a type 2 T helper cell (Th2) immune response. The IndigoPulverata Levis extract (CHD) is used in traditional Southeast Asian medicine; however, its beneficial effects on AD remain uninvestigated. Therefore, we investigated the therapeutic effects of CHD in 2,4-dinitrochlorobenzene (DNCB)-induced BALB/c mice and tumor necrosis factor (TNF)-α- and interferon gamma (IFN)-γ-stimulated HaCaT cells. We evaluated immune cell infiltration, skin thickness, and the serum IgE and TNF-α levels in DNCB-induced AD mice. Moreover, we measured the expression levels of pro-inflammatory cytokines, mitogen-activated protein kinase (MAPK), and the nuclear factor-kappa B (NF-κB) in the mice dorsal skin. We also studied the effect of CHD on the translocation of NF-κB p65 and inflammatory chemokines in HaCaT cells. Our in vivo results revealed that CHD reduced the dermis and epidermis thicknesses and inhibited immune cell infiltration. Furthermore, it suppressed the proinflammatory cytokine expression and MAPK and NF-κB phosphorylations in the skin tissue and decreased serum IgE and TNF-α levels. In vitro results indicated that CHD downregulated inflammatory chemokines and blocked NF-κB p65 translocation. Thus, we deduced that CHD is a potential drug candidate for AD treatment.


1991 ◽  
Vol 283 (5) ◽  
pp. 292-296 ◽  
Author(s):  
M. Rupprecht ◽  
R. Rupprecht ◽  
N. Wodarz ◽  
H. U. Braner ◽  
J. Kornhuber ◽  
...  

2020 ◽  
Author(s):  
Bhavnita Soni ◽  
Shailza Singh

AbstractMacrophage phenotype plays a crucial role in the pathogenesis of Leishmanial infection. Pro-inflammatory cytokines are the key regulators that eliminate the infection induced by Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. Suppressor of cytokine signaling (SOCS) is a well-known negative feedback regulator of JAK/STAT pathway. However, change in expression levels of SOCS in correlation with the establishment of infection is not well understood. Mathematical modeling of IL6 signaling pathway have helped identified the role of SOCS1 in establishment of infection. Furthermore, the ratio of SOCS1 and SOCS3 has been quantified both in silico as well as in vitro, indicating an immune axis which governs the macrophage phenotype during L. major infection. The ability of SOCS1 protein to inhibit the JAK/STAT1 signaling pathway and thereby decreasing pro-inflammatory cytokine expression makes it a strong candidate for therapeutic intervention. Using synthetic biology approaches, peptide based immuno-regulatory circuit have been designed to target the activity of SOCS1 which can restore pro-inflammatory cytokine expression during infection.


Sign in / Sign up

Export Citation Format

Share Document