scholarly journals A Novel 3-D Segmentation Algorithm for Anatomic Liver and Tumor Volume Calculations for Liver Cancer Treatment Planning

2012 ◽  
Author(s):  
Mohammed Goryawala
2021 ◽  
Vol 60 (1) ◽  
pp. 223-236
Author(s):  
Walaa Maamoun ◽  
Mohamed I. Badawi ◽  
Ayman A Aly ◽  
Y. Khedr

Abstract Hyperthermia therapy is a promising therapy for liver cancer treatment that utilizes external electromagnetic waves to heat the tumor zone to preferentially kill or minimize cancer cells. Nevertheless, it’s a challenge to realize localized heating of the cancer tissue without harming the surrounding healthy tissue. This research proposes to utilize nanoparticles as microwave absorbers to enhance microwave imaging and achieve localized hyperthermia therapy. A realistic 3D abdomen model has been segmented using 3D Slicer segmentation software, and then the obtained segmented CAD model exported to Computer Simulation Technology (CST STUDIO) for applying the Finite Element Modeling (FEM). Next investigating both imaging and treatment capability. Finally, the specific absorption rate (SAR) and temperature distribution were computed without nanoparticles and with different types of nanoparticles such as gold (GNPs) and silver nanoparticles at frequency 915 MHz. By comparing the achived results, it was seen that Silver nanoparticles can make a great enhancement in raising the temperature. However, this result was unsatisfactory but, after adding gold nanoparticles the temperature exceed 42°C, at frequency 915 MHz which is achieving the hyperthermia treatment without harming the nearby healthy tissue, GNPs also can achieve a great enhancement in SAR result


2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Athar Ehtiati ◽  
Payman Hejazi ◽  
Mohsen Bakhshandeh ◽  
Ali Jabbary Arfaee ◽  
Eftekhar Rajab Bolookat ◽  
...  

Background: Despite the benefits of contrast-enhanced computed tomography (CT) scans in better tumor volume delineation, it can affect the accuracy of dose calculation in radiation therapy. This study examined this effect on a thorax phantom. Objectives: The influence of different variables including the concentrations of the Visipaque contrast media, tumor sizes, and CT scan energies on the dose measurement was examined. Methods: Transparent cylinders containing the contrast media were inserted in the lung area of the phantom and the CT scans were made. Non-enhanced CT scans were also acquired. Treatment planning using 2 opposite fields was performed on the CT scans and the doses were calculated in the treatment planning system. The results of the 2 sets of enhanced and non-enhanced CT scans were compared. Results: The correlation between concentration and the percentage of mean dose of the tumor volume was significant in 2 of the tumor sizes. The differences in the mean doses of the 2 plans were examined and more than 3% increase was observed in higher concentrations of the contrast media. Conclusions: According to this study, the suitable concentration of the contrast media administered and the CT scan energy should be considered. This would help to decrease the discrepancies between the calculated and delivered dose in radiotherapy treatments to a clinically acceptable level. The importance of time delays for CT scans after administration of the contrast media is emphasized.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Jens P.E. Schouten ◽  
Samantha Noteboom ◽  
Roland M. Martens ◽  
Steven W. Mes ◽  
C. René Leemans ◽  
...  

Abstract Background  Accurate segmentation of head and neck squamous cell cancer (HNSCC) is important for radiotherapy treatment planning. Manual segmentation of these tumors is time-consuming and vulnerable to inconsistencies between experts, especially in the complex head and neck region. The aim of this study is to introduce and evaluate an automatic segmentation pipeline for HNSCC using a multi-view CNN (MV-CNN). Methods The dataset included 220 patients with primary HNSCC and availability of T1-weighted, STIR and optionally contrast-enhanced T1-weighted MR images together with a manual reference segmentation of the primary tumor by an expert. A T1-weighted standard space of the head and neck region was created to register all MRI sequences to. An MV-CNN was trained with these three MRI sequences and evaluated in terms of volumetric and spatial performance in a cross-validation by measuring intra-class correlation (ICC) and dice similarity score (DSC), respectively. Results The average manual segmented primary tumor volume was 11.8±6.70 cm3 with a median [IQR] of 13.9 [3.22-15.9] cm3. The tumor volume measured by MV-CNN was 22.8±21.1 cm3 with a median [IQR] of 16.0 [8.24-31.1] cm3. Compared to the manual segmentations, the MV-CNN scored an average ICC of 0.64±0.06 and a DSC of 0.49±0.19. Improved segmentation performance was observed with increasing primary tumor volume: the smallest tumor volume group (<3 cm3) scored a DSC of 0.26±0.16 and the largest group (>15 cm3) a DSC of 0.63±0.11 (p<0.001). The automated segmentation tended to overestimate compared to the manual reference, both around the actual primary tumor and in false positively classified healthy structures and pathologically enlarged lymph nodes. Conclusion An automatic segmentation pipeline was evaluated for primary HNSCC on MRI. The MV-CNN produced reasonable segmentation results, especially on large tumors, but overestimation decreased overall performance. In further research, the focus should be on decreasing false positives and make it valuable in treatment planning.


2014 ◽  
Vol 38 (10) ◽  
pp. 2685-2691 ◽  
Author(s):  
Nazario Portolani ◽  
Gianluca Baiocchi ◽  
Federico Gheza ◽  
Sarah Molfino ◽  
Luigi Grazioli ◽  
...  

2018 ◽  
Vol 17 (4) ◽  
pp. 441-446 ◽  
Author(s):  
Jalil ur Rehman ◽  
Muhammad Isa ◽  
Nisar Ahmad ◽  
H. M. Noor ul Huda Khan Asghar ◽  
Zaheer A. Gilani ◽  
...  

AbstractBackgroundAccurate three-dimensional dosimetry is essential in modern radiotherapy techniques such as volumetric-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). In this research work, the PRESAGE® dosimeter was used as quality assurance (QA) tool for VMAT planning for head and neck (H&N) cancer.Material and methodComputer tomography (CT) scans of an Image Radiation Oncology Core (IROC) H&N anthropomorphic phantom with both IROC standard insert and PRESAGE® insert were acquired separately. Both CT scans were imported into the Pinnacle (9.4 version) TPS for treatment planning, where the structures [planning target volume (PTV), organs at risk) and thermoluminescent detectors (TLDs) were manually contoured and used to optimise a VMAT plan. Treatment planning was done using VMAT (dual arc: 182°–178°, 178°–182°). Beam profile comparisons and gamma analysis were used to quantify agreement with film, PRESAGE® measurement and treatment planning system (TPS) calculated dose distribution.ResultsThe average ratio of TLD measured to calculated doses at the four PTV locations in the H&N phantom were between 0·95 to 0·99 for all three VMAT deliveries. Dose profiles were taken along the left–right, the anterior–posterior and superior–inferior axes, and good agreement was found between the PRESAGE® and Pinnacle profile. The mean value of gamma results for three VMAT deliveries in axial and sagittal planes were found to be 94·24 and 93·16% when compared with film and Pinnacle, respectively. The average values comparing the PRESAGE® results and dose values calculated on Pinnacle were observed to be 95·29 and 94·38% in the said planes, respectively, using a 5%/3 mm gamma criteria.ConclusionThe PRESAGE® dose measurements and calculated dose of pinnacle show reasonable agreement in both axial and sagittal planes for complex dual arc VMAT treatment plans. In general, the PRESAGE® dosimeter is found to be a feasible QA tool of VMAT plan for H&N cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document