scholarly journals Three-Dimensional Surface Evaluation and Shear Bond Strength of Three Pre-treatment E-max Surfaces for Metal and Ceramic Orthodontic Brackets

2020 ◽  
Vol 10 (2) ◽  
pp. 113-118
Author(s):  
Huda A. Mohammed ◽  
Omar S. Ali

3D evaluation and shear bond strength (SBS) for metal and ceramic brackets after three pre-treatment surfaces of lithium disilicate (LD) crowns. Sixty lithium disilicate (LD) crowns were fabricated in laboratory according to manufacturer instruction and then divided into six groups (three groups for metal brackets and three groups for ceramic one). The 1st group for both was treated with round diamond bur, the 2nd one by hydrofluoric acid (HFA) 9.0%, and the 3rd group by laser (Er,Cr:YSGG). All treated surfaces were examined by laser profilometer and scan electron microscope. The Scotchbond Universal Adhesive and Transbond XT were used for bracketing procedure for metal and ceramic bracket (central incisor, 0,022” slot). Universal testing machine was used for shear bond. A crosshead speed of 1 mm/min was used, and the maximum load necessary to deboned the bracket will be recorded. HFA treated surfaces gave a highest SBS for both metal and ceramic brackets, then laser and finally the bur. The lowest roughness parameter Sa (arithmetical mean height) was in bur, both laser and HFA gave no significant differences. The HFA gave a highest Sz (maximum height) and Spc (arithmetic mean peak curvature) value. To increase the shear bond strength, the HFA is one of the best methods for roughness although the laser gave nearby roughness parameters. Ceramic brackets gave higher SBS than metal one with all pre-treatment procedures.

2015 ◽  
Vol 40 (4) ◽  
pp. 372-378 ◽  
Author(s):  
VK Kalavacharla ◽  
NC Lawson ◽  
LC Ramp ◽  
JO Burgess

SUMMARY Objectives To measure the effects of hydrofluoric acid (HF) etching and silane prior to the application of a universal adhesive on the bond strength between lithium disilicate and a resin. Methods and Materials Sixty blocks of lithium disilicate (e.max CAD, Ivoclar Vivadent) were sectioned into coupons and polished. Specimens were divided into six groups (n=10) based on surface pretreatments, as follows: 1) no treatment (control); 2) 5% HF etch for 20 seconds (5HF); 3) 9.5% HF etch for 60 seconds (9.5HF); 4) silane with no HF (S); 5) 5% HF for 20 seconds + silane (5HFS); and 6) 9.5% HF for 60 seconds + silane (9.5HFS). All etching was followed by rinsing, and all silane was applied in one coat for 20 seconds and then dried. The universal adhesive (Scotchbond Universal, 3M ESPE) was applied onto the pretreated ceramic surface, air thinned, and light cured for 10 seconds. A 1.5-mm-diameter plastic tube filled with Z100 composite (3M ESPE) was applied over the bonded ceramic surface and light cured for 20 seconds on all four sides. The specimens were thermocycled for 10,000 cycles (5°C-50°C/15 s dwell time). Specimens were loaded until failure using a universal testing machine at a crosshead speed of 1 mm/min. The peak failure load was used to calculate the shear bond strength. Scanning electron microscopy images were taken of representative e.max specimens from each group. Results A two-way analysis of variance (ANOVA) determined that there were significant differences between HF etching, silane treatment, and the interaction between HF and silane treatment (p<0.01). Silane treatment provided higher shear bond strength regardless of the use or concentration of the HF etchant. Individual one-way ANOVA and Tukey post hoc analyses were performed for each silane group. Shear bond strength values for each etch time were significantly different (p<0.01) and could be divided into significantly different groups based on silane treatment: no silane treatment: 0 HF < 5% HF < 9.5% HF; and RelyX silane treatment: 0 HF < 5% HF and 9.5% HF. Conclusions Both HF and silane treatment significantly improved the bond strength between resin and lithium disilicate when used with a universal adhesive.


2020 ◽  
Vol 8 (D) ◽  
pp. 1-6
Author(s):  
Hoda Pouyanfar ◽  
Amin Golshah ◽  
Matin Shekarbeigi

AIM: This study aimed to assess the shear bond strength (SBS) of metal and ceramic brackets bonded to composite restorations using single bond 5th generation bonding agent and G-Premio Bond universal adhesive. MATERIALS AND METHODS: In this in vitro, experimental study, 60 sound extracted human premolars were veneered with composite and were then randomly divided into four groups (n = 15) of Single Bond + Transbond XT + metal brackets, universal adhesive + Transbond XT+ metal brackets, Single Bond + Transbond XT + ceramic brackets, and universal adhesive + Transbond XT + ceramic brackets. Twenty-four hours after thermocycling, the SBS of brackets was measured using a universal testing machine. The adhesive remnant index (ARI) score was also determined under a stereomicroscope. Two-way ANOVA was used to compare the groups (p <0.05). RESULTS: No significant difference was found in the mean SBS of ceramic and metal brackets or between the two bonding agents (p > 0.05). The interaction effect of type of bracket and type of bonding agent on SBS was not significant (p > 0.05). ARI score I had the highest frequency in Single Bond + Metal bracket group. The highest frequency of ARI score V was noted in the Single Bond + Ceramic bracket group. A comparison of ARI scores of metal bracket groups showed a significant difference between single bond and universal adhesive (p = 0.002). CONCLUSION: Both adhesives can provide adequate SBS for the bonding of metal and ceramic brackets to composite restorations.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Zohreh Moradi ◽  
Farnoosh Akbari ◽  
Sara Valizadeh

Aim. This study aimed to assess shear bond strength (SBS) of resin cement to zirconia ceramic with different surface treatments by using Single Bond Universal. Methods. In this in vitro study, 50 zirconia discs (2 × 6 mm) were divided into 5 groups of (I) sandblasting with silica-coated alumina (CoJet)  + silane + Single Bond 2, (II) sandblasting with CoJet + Single Bond Universal, (III) sandblasting with alumina + Single Bond Universal, (IV) sandblasting with alumina + Z-Prime Plus, and (V) Single Bond Universal with no surface treatment. Resin cement was applied in plastic tubes (3 × 5 mm2), and after 10,000 thermal cycles, the SBS was measured by a universal testing machine. The mode of failure was determined under a stereomicroscope at × 40 magnification. Data were analyzed using one-way ANOVA. Results. The maximum (6.56 ± 4.29 MPa) and minimum (1.94 ± 1.96 MPa) SBS values were noted in groups III and I, respectively. Group III had the highest frequency of mixed failure (60%). Group V had the maximum frequency of adhesive failure (100%). Conclusion. Single Bond Universal + sandblasting with alumina or silica-coated alumina particles is an acceptable method to provide a strong SBS between resin cement and zirconia.


2009 ◽  
Vol 79 (3) ◽  
pp. 571-576 ◽  
Author(s):  
Buncha Samruajbenjakul ◽  
Boonlert Kukiattrakoon

Abstract Objective: To test the hypothesis that the there is no difference between the shear bond strengths of different base designs of ceramic brackets bonded to glazed feldspathic porcelains. Materials and Methods: Forty glazed feldspathic porcelain specimens (15 mm in diameter and 1.5 mm in thickness) were prepared and divided into 4 groups (n = 10). Ten pieces of each group of different ceramic bracket base designs (beads, large round pits, and irregular base) and one group of stainless steel brackets (served as a control) were bonded to glazed feldspathic porcelains under a 200 gram load. Then all samples were subjected to shear bond strength evaluation with a universal testing machine at a crosshead speed of 0.2 mm/min. Data were analyzed through one-way ANOVA and Tukey's HSD test at a .05 significance level. The mode of failure after debonding was examined under a stereoscope. Results: This study revealed that the beads base design had the greatest shear bond strength (24.7 ± 1.9 MPa) and was significantly different from the large round pits base (21.3 ± 2 MPa), irregular base (19.2 ± 2.0 MPa), and metal mesh base (15.2 ± 2.4 MPa). The beads base design had 100% porcelain-adhesive failure, the large round pits had 100% bracket-adhesive failure, and the irregular base design had 70% combination failure and 30% porcelain-adhesive failure. Conclusions: The hypothesis is rejected. The various base designs of metal and ceramic brackets influence bond strength to glazed feldspathic porcelain, but all should be clinically acceptable.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Andreas Hellak ◽  
Jennifer Ebeling ◽  
Michael Schauseil ◽  
Steffen Stein ◽  
Matthias Roggendorf ◽  
...  

Objective.The aim of this in vitro study was to determine the shear bond strength (SBS) and adhesive remnant index (ARI) score of two self-etching no-mix adhesives (iBond™and Scotchbond™) on different prosthetic surfaces and enamel, in comparison with the commonly used total etch system Transbond XT™.Materials and Methods. A total of 270 surfaces (1 enamel and 8 restorative surfaces,n=30) were randomly divided into three adhesive groups. In group 1 (control) brackets were bonded with Transbond XT primer. In the experimental groups iBond adhesive (group 2) and Scotchbond Universal adhesive (group 3) were used. The SBS was measured using a Zwicki 1120™testing machine. The ARI and SBS were compared statistically using the Kruskal–Wallis test (P≤0.05).Results. Significant differences in SBS and ARI were found between the control group and experimental groups.Conclusions. Transbond XT showed the highest SBS on human enamel. Scotchbond Universal on average provides the best bonding on all other types of surface (metal, composite, and porcelain), with no need for additional primers. It might therefore be helpful for simplifying bonding in orthodontic procedures on restorative materials in patients. If metal brackets have to be bonded to a metal surface, the use of a dual-curing resin is recommended.


Author(s):  
Shubhangi Mani ◽  
Darshan Deepak Shah ◽  
Narendra Manwar ◽  
Rushabh Malde

ABSTRACT Aim To compare the shear bond strength of Tetric N Bond (Ivoclar Vivadent) and Single Bond Universal Adhesive (3M ESPE, MN, USA) on ground enamel and dentin. Materials and methods A total of 30 extracted human maxillary and mandibular molars and premolars were used for this study and divided into two groups which were treated with Tetric N Bond (Ivoclar Vivaden) t- and Single Bond Universal Adhesive (3M ESPE, MN, USA). The shear bond strength was tested on Universal testing machine (Instron). Results There was statistically significant difference in the shear bond strength among the two groups. Conclusion Based on the results (Tetric N Bond, Ivoclar Vivadent) had higher bond strength than Single Bond Universal Adhesive (3M ESPE, MN, USA) on ground enamel and dentin. How to cite this article Shah DD, Chandak M, Manwar N, Mani S, Mani A, Saini R, Malde R. Comparing Shear Bond Strength of Two Step vs One Step Bonding Agents on Ground Enamel and Dentin: An in vitro Study. Int J Experiment Dent Sci 2014;3(1):1-3.


2013 ◽  
Vol 18 (2) ◽  
pp. 76-80 ◽  
Author(s):  
Aisha de Souza Gomes Stumpf ◽  
Carlos Bergmann ◽  
José Renato Prietsch ◽  
Juliane Vicenzi

OBJECTIVE: To determine the shear bond strength of orthodontic brackets using color change adhesives that are supposed to aid in removing excess of bonding material and compare them to a traditional adhesive. METHODS: Ninety metallic and ninety ceramic brackets were bonded to bovine incisors using two color change adhesives and a regular one. A tensile stress was applied by a universal testing machine. The teeth were observed in a microscope after debonding in order to determine the Adhesive Remnant Index (ARI). RESULTS: The statistical analysis (ANOVA, Tukey, and Kruskall-Wallis tests) demonstrated that the mean bond strength presented no difference when metallic and ceramic brackets were compared but the bond resistance values were significantly different for the three adhesives used. The most common ARI outcome was the entire adhesive remaining on the enamel. CONCLUSIONS: The bond strength was similar for metallic and ceramic brackets when the same adhesive system was used. ARI scores demonstrated that bonding with these adhesives is safe even when ceramic brackets were used. On the other hand, bond strength was too low for orthodontic purposes when Ortho Lite Cure was used.


2020 ◽  
Vol 14 (1) ◽  
pp. 240-246 ◽  
Author(s):  
Luis A. V. Izquierdo ◽  
Francyle S. H. Sanches ◽  
Francisco Molina ◽  
Rafael P. Henriques ◽  
Emerson F. Cruz ◽  
...  

Introduction: Brackets bonded to enamel surface depend on the adhesion material and the quality of the bracket base. Objective: The aim of this study was to compare the shear bond strength of metallic brackets with Metal Injection Molding (MIM) technology base or welded base. Materials and Methods: Forty mandibular extracted premolars mounted in acrylic resin blocks were divided randomly into two groups, both bonded with Transbond XT. In Group 1, brackets with MIM technology bases (Masel) were used, and in group 2, brackets with a welded base (Morelli) were used. After 24 hours, all brackets were tested for shear bond strength in a universal testing machine. Intergroup comparison was performed with an independent t test. Results: MIM base brackets showed a mean maximum load registered of 107.55 N, a mean shear bond strength of 9.58 MPa with a standard deviation of 5.80 MPa and the welded base brackets showed a mean maximum load of 167.37 N, a mean shear bond strength of 13.28 MPa with a standard deviation of 2.58 MPa. The difference between the two groups was statistically significant, indicating a higher shear bond strength of the welded base brackets. Conclusion: It was concluded that the brackets with welded bases presented a significantly higher shear bond strength than the brackets with MIM bases.


2019 ◽  
Vol 13 (02) ◽  
pp. 150-155
Author(s):  
Sibel Cetik ◽  
Thaï Hoang Ha ◽  
Léa Sitri ◽  
Hadrien Duterme ◽  
Viet Pham ◽  
...  

Abstract Objectives Due to the high demand for all-ceramic restorations, monolithic zirconia restorations are nowadays frequently used. With the demand for adult orthodontic treatments, orthodontists need to be mindful of the quality of their brackets bonding to this type of material, as it requires special conditioning. This study aimed to compare different surface treatments of zirconia when bonding metal or ceramic orthodontic brackets. The objectives are to compare the shear bond strength; the amount of adhesive remaining on the surface of the material; the incidence of adhesive, cohesive, and mixed failures; and the occurrence of zirconia fractures. Materials and Methods Forty monolithic blocks of zirconia of a diameter of 10 mm and a length of 10 mm were prepared and randomly divided into two groups (n = 20): metallic or ceramic brackets. Each group was subsequently divided into two subgroups (n = 10) depending on the surface preparation (laser treatment or airborne particle abrasion): SMB (airborne particle abrasion, metal bracket), SCB (airborne particle abrasion, ceramic bracket), LMB (laser; metal bracket), and LCB (laser, ceramic bracket). The samples were tested for shear bond strength using a universal testing machine. The adhesive remnant index and the occurrence of zirconia fractures and different types of failures were assessed by optical and electron microscopy. Statistical Analysis Results were analyzed using analysis of variance. Results The differences were significant between the metallic (SMB, LMB) and ceramic (SCB, LCB) bracket groups with regard to shear bond strength, with respectively 23.29 ± 5.34 MPa, 21.59 ± 4.03 MPa, 20.06 ± 4.05 MPa, and 17.55 ± 3.88 MPa. In terms of surface treatment, no statistical differences were found between the different groups. Conclusion Metal brackets have a greater bond strength than ceramic brackets when cemented to zirconia. The surface treatment of zirconia surface has no influence on the shear bond strength.


2012 ◽  
Vol 23 (6) ◽  
pp. 698-702 ◽  
Author(s):  
Gabriela da Rocha Leódido ◽  
Hianna Oliveira Fernandes ◽  
Mateus Rodrigues Tonetto ◽  
Cristina Dupim Presoto ◽  
Matheus Coêlho Bandéca ◽  
...  

The aim of this in vitro study was to evaluate the shear bond strength of brackets after pre-treatment with different fluoride solutions. This study used 48 freshly extracted sound bovine incisors that were randomly assigned to 4 experimental groups (n=12). CG: (control) without treatment; NF: 4 min application of neutral fluoride; APF: application of 1.23% acidulated phosphate fluoride (APF) for 4 min; and SFV: application of 5% sodium fluoride varnish for 6 h. For each group, after surface treatment, prophylaxis of enamel and bracket bonding with Transbond XT composite resin (3M) were performed following the manufacturer's specifications. The shear bond strength was performed with a universal testing machine 24 h after fixing the brackets. The tooth surfaces were analyzed to verify the adhesive remnant index (ARI). Data were analyzed statistically by ANOVA and Tukey's test (α=0.05). There was statistically significant difference among the groups (p<0.0001). CG and NF groups presented significantly higher bond strength than APF and SFV. There was no significant difference between CG and NF or between APF and SFV (p>0.05). The analysis of ARI scores revealed that most failures occurred at the enamel-resin interface. It may be concluded that the pre-treatment of enamel with 1.23% APF and 5% SFV prior to fixing orthodontic brackets reduces shear bond strength values.


Sign in / Sign up

Export Citation Format

Share Document