scholarly journals Evaluation of species transfer models in the cfd simulation of fixed bed soybean drying

2021 ◽  
Vol 16 ◽  
pp. 1-9
Author(s):  
Felipe Leonardo Barcelos Mateus ◽  
Mauro Magalhães Leite Faria ◽  
Irineu Petri Júnior
2020 ◽  
Vol 9 (3) ◽  
pp. e123932667
Author(s):  
Ana Carolina Ribeiro Stoppe ◽  
José Luiz Vieira Neto ◽  
Kassia Graciele dos Santos

Facing the challenges to develop more efficient solar dryers, this work used the Computational fluid dynamics (CFD) to test different configurations of lateral air feeding in a fixed bed solar dryer. Through the simulations, it was found the best configuration of air inlet that provided a better fluid-particle contact. It was made a fixed bed solar dryer, which was tested using soybeans seeds and Moringa oleifera LAM leaves to evaluate the drying rate using two bed configurations: fully opened and partially opened inlets. The CFD results indicated that the air flow rate was more pronounced at the bed top, near the exhaust fan. This can explain the poor drying near the bottom for the experiments performed with all lateral inlets opened. According to the simulation results, the air velocity profile was more homogeneous when the air was fed only near the bottom. So, the use of a partially opened configuration led to a more homogenous solar drying, with a drying rate about 300% higher than the one using the fully opened inlets.


Author(s):  
Anthony G. Dixon ◽  
Michiel Nijemeisland ◽  
Hugh Stitt

Modeling of fluid flow, heat transfer and reaction in fixed beds is an essential part of their design. This is especially critical for highly endothermic or exothermic reactions in low tube-to-particle diameter ratio (N) tubes, such as are used in steam reforming and partial oxidation. In the simulations a near-wall section of an entire bed is used to create a simulation geometry that can be handled in the available computational domain. A full bed model was also available for validation of the wall-segment model. In the wall-segment approach a section of the bed is modeled in more detail, allowing for a relatively smaller control volume size and a more detailed view of the flow and heat transfer patterns. A simple model of a steam reforming process is used in the CFD simulation to incorporate the effect of reaction rate on temperature profiles in the bed. Simulations were performed under realistic industrial conditions of high temperature, pressure and gas flow rate, with gas properties corresponding to those of steam reforming. A constant wall heat flux was imposed, and various shapes of particles studied with heat sinks on the surface to simulate the reforming endothermic reaction, which is mainly confined to the surface of the pellet. Results will be presented showing the existence and effect of temperature profiles on the catalyst particles, and the effect on the local heat transfer rates of different gas compositions, corresponding to conditions at different locations along the catalyst tube. Local deactivation of catalyst particles can also lead to wall hot spots, or 'giraffe-necking' which can be well-reproduced by the simulations.


Author(s):  
Mingzheng Zhang ◽  
Michelle Ng Xin Yi ◽  
Ban Zhen Hong ◽  
Liming Che ◽  
Bing Hui Chen

Exothermic methanation reaction from syngas to synthetic natural gas (SNG) in fixed-bed reactor suffers from hot-spot formation caused by limited heat transfer area and relatively poor radial heat transfer of catalyst particle packings. To address this issue, monolithic catalyst with excellent transport and mechanical properties is under development. In this contribution, CFD simulations of methanation reaction from syngas to SNG over three types of 3D-printed monolithic catalysts were performed. The simulation results are in good agreement with experimental ones. Compared with monolithic catalyst with honeycomb-shaped straight-channel structure or tetrahedral periodic structure, bio-inspired monolithic catalyst having the same characteristic of cancellous bone was found to be promising due to its lower pressure drop, better heat transfer, superior mass transfer and thus higher conversion of syngas. The mechanism and promising applications of 3D-printing bio-inspired monolithic catalyst are discussed.


2020 ◽  
Vol 4 (2) ◽  
pp. 1-8
Author(s):  
Hosseini SA

This work aims to three-dimension computational fluid dynamics (CFD) simulation of n-heptane catalytic cracking in fixed bed reactor (L=0.80 m) and to promote the cracking model of n-heptane using CFD. The catalyst granules were located in middle section of the reactor. The reaction scheme of n-heptane catalytic cracking was involved one primary reaction and 24 secondary reactions. Catalytic cracking process with a model of 25 molecular reactions was simulated by Fluent 6.0 software. The ratio of tube-to-particle diameter was considered N=2. The contours of coke deposition rate, vorticity, velocity and coke precursors and their relations along the reactor were predicted and discussed.


2018 ◽  
Author(s):  
Zunhua Zhang ◽  
Pengpeng Jia ◽  
Shangsheng Feng ◽  
Junjie Liang ◽  
Gesheng Li

Sign in / Sign up

Export Citation Format

Share Document