scholarly journals STUDY OF THE INFLUENCE OF HIGH AMBIENT TEMPERATURE ON THE SAFETY OF THE ROAD TRANSPORT PROCESS

Author(s):  
I.N. Yakunin ◽  
◽  
O.M. Menshikh ◽  
D.M. Shungulov ◽  
◽  
...  
2018 ◽  
Vol 45 (1) ◽  
pp. 305-324 ◽  
Author(s):  
Agnieszka Tubis

Abstract In the presented paper, author focus on the issues related to risk assessment of transport processes performance. The author presented the characteristics of the traditional approach to risk assessment in transport, which is popular in the literature. This approach addresses the strategic risk assessment for the road transport system and it focuses primarily on aspects related to the transport safety. The business approach to risk assessment from the perspective of the managers of the transport process is presented in the next part of the article. In this case, the subject of the analysis is the operational risk, which focuses on the risks affecting the implementation of the transport process and the achievement of the company’s operational objective. The article concludes with a summary, including directions for further research.


2020 ◽  
Vol 11 (1) ◽  
pp. 305
Author(s):  
Rubén Escribano-García ◽  
Marina Corral-Bobadilla ◽  
Fátima Somovilla-Gómez ◽  
Rubén Lostado-Lorza ◽  
Ash Ahmed

The dimensions and weight of machines, structures, and components that need to be transported safely by road are growing constantly. One of the safest and most widely used transport systems on the road today due to their versatility and configuration are modular trailers. These trailers have hydraulic pendulum axles that are that are attached in pairs to the rigid platform above. In turn, these modular trailers are subject to limitations on the load that each axle carries, the tipping angle, and the oil pressure of the suspension system in order to guarantee safe transport by road. Optimizing the configuration of these modular trailers accurately and safely is a complex task. Factors to be considered include the load’s characteristics, the trailer’s mechanical properties, and road route conditions including the road’s slope and camber, precipitation and direction, and force of the wind. This paper presents a theoretical model that can be used for the optimal configuration of hydraulic cylinder suspension of special transport by road using modular trailers. It considers the previously mentioned factors and guarantees the safe stability of road transport. The proposed model was validated experimentally by placing a nacelle wind turbine at different points within a modular trailer. The weight of the wind turbine was 42,500 kg and its dimensions were 5133 × 2650 × 2975 mm. Once the proposed model was validated, an optimization algorithm was employed to find the optimal center of gravity for load, number of trailers, number of axles, oil pressures, and hydraulic configuration. The optimization algorithm was based on the iterative and automatic testing of the proposed model for different positions on the trailer and different hydraulic configurations. The optimization algorithm was tested with a cylindrical tank that weighed 108,500 kg and had dimensions of 19,500 × 3200 × 2500 mm. The results showed that the proposed model and optimization algorithm could safely optimize the configuration of the hydraulic suspension of modular trailers in special road transport, increase the accuracy and reliability of the calculation of the load configuration, save time, simplify the calculation process, and be easily implemented.


2021 ◽  
Vol 6 (5) ◽  
pp. 72
Author(s):  
Tor-Olav Nævestad ◽  
Beate Elvebakk ◽  
Karen Ranestad

About 36% of fatal road accidents in Norway involve at least one driver who is “at work”. It has been argued that the implementation of rules clearly defining the responsibility of road transport companies to prevent work related accidents, by implementing safety management systems (SMS), could lead to increased safety. In the present study we tested the validity of this suggestion, by examining the influence of different sector rules on work-related accident prevention in Norwegian road and maritime transport. In contrast to the road sector, the maritime sector has had rules requiring SMS for over 20 years, clearly defining the shipping companies responsibility for prevention of work-related accidents. The aims of the study were to: (1) examine how the different sector rules influence perceptions of whether the responsibility to prevent work-related accidents is clearly defined in each sector; and (2) compare respondents’ perceptions of the quality of their sectors’ efforts to prevent work-related accidents, and factors influencing this. The study was based on a small-scale survey (N = 112) and qualitative interviews with sector experts (N = 17) from companies, authorities, and NGOs in the road and the maritime sectors. Results indicate that respondents in the maritime sector perceive the responsibility to prevent work-related accidents as far more clearly defined, and they rate their sector’s efforts to prevent accidents as higher than respondents in road. Multivariate analyses indicate that this is related to the scope of safety regulations in the sectors studied, controlled for several important framework conditions. Based on the results, we conclude that the implementation of SMS rules focused on transport companies’ responsibility to prevent work-related accidents could improve safety in the road sector. However, due to barriers to SMS implementation in the road sector, we suggest starting with a simplified version of SMS.


Author(s):  
Li Niu ◽  
Maria Teresa Herrera ◽  
Blean Girma ◽  
Bian Liu ◽  
Leah Schinasi ◽  
...  

Author(s):  
S M C Soares ◽  
J R Sodre

This paper describes the influence of the atmospheric conditions on the performance of a vehicle. Tests were carried out on the road, under different conditions of ambient temperature, pressure and humidity, measuring the acceleration time. The tested vehicle featured a gasoline-fuelled four-cylinder engine, with variable intake manifold length and multipoint fuel injection. The vehicle was tested at sea level and at an altitude of 827 m above sea level, with the ambient temperature ranging from 20 to 30°C. The times required for the vehicle to go from 80 to 120 km/h, from 40 to 100 km/h and to reach distances of 400 and 1000 m leaving from an initial speed of 40 km/h at full acceleration were recorded. The results showed the vehicle performance to be more affected by changes in the atmospheric pressure than in the temperature. An average difference of 3 per cent in the time to reach 1000 m, leaving from the speed of 40 km/h at full acceleration, was found between the atmospheric pressures tested, for a fixed temperature.


Sign in / Sign up

Export Citation Format

Share Document