scholarly journals A Study of the Pulsations of Flow in the Settling Chamber and Their Relationship with the Pulsations of the Supersonic Flow

2019 ◽  
Vol 14 (2) ◽  
pp. 77-85
Author(s):  
L. V. Afanasev ◽  
A. A. Yatskih ◽  
A. D. Kosinov ◽  
Yu. G. Yermolaev ◽  
N. V. Semionov ◽  
...  

Experimental study of the influence of flow pulsation in settling chamber on the supersonic free stream disturbances was carried out. Data on the pulsations in the settling chamber and the efficiency of deturbulization system as well as the correlation of pulsations of the flow of settling chamber and flow pulsations in test section of T-325 supersonic wind tunnel of ITAM SB RAS were obtained.

2018 ◽  
Vol 35 (3) ◽  
pp. 203-215
Author(s):  
Leslie Smith ◽  
Saeed Farokhi

Abstract A novel injector has been designed and cold flow injection tests were performed in a modified supersonic wind tunnel. To complement these experimental studies three dimensional STAR-CCM+CFD simulations were developed. The pulse width may be varied, with options of injecting gas for 33 %, 50 % and 66 % of the injection period. The scramjet combustor environment is simulated in a supersonic wind tunnel through a backward facing step for secondary injection purposes and a 157.5 cm (62-inch) long test section. The gas in secondary injection is carbon dioxide and the primary flow is air. The simulations show a coupled interaction between the forcing from injection and the shear layer. Steady state static pressure measurements on the lower wall of the wind tunnel test section agree well with the simulated static pressure along the lower wall. The pulse width strongly impacts shear layer reattachment on the lower wall and varies between 2.4 and 4.3 step heights. Reduction in duty cycle from 66 % to 33 % at 1 kHz caused ~30 % reduction in the shear layer reattachments distance, which points to large scale mixing enhancement.


1988 ◽  
Vol 92 (916) ◽  
pp. 224-229
Author(s):  
P. E. Roach

Summary The procedures employed for the design of a closed-circuit, boundary layer wind tunnel are described. The tunnel was designed for the generation of relatively large-scale, two-dimensional boundary layers with Reynolds numbers, pressure gradients and free-stream turbulence levels typical of the turbomachinery environment. The results of a series of tests to evaluate the tunnel performance are also described. The flow in the test section is shown to be highly uniform and steady, with very low (natural) free-stream turbulence intensities. Measured boundary layer mean and fluctuating velocity profiles were found to be in good agreement with classical correlations. Test-section free-stream turbulence intensities are presented for grid-generated turbulence: agreement with expectation is again found to be good. Immediate applications to the tunnel include friction drag reduction and boundary layer transition studies, with future possibilities including flow separation and other complex flows typical of those found in gas turbines.


2019 ◽  
Vol 2 (2) ◽  
pp. 25
Author(s):  
Andi Tri G

Aerodinamika yaitu salah satu bagian dari ilmu dinamika fluida yang mempelajari tentang gaya yang bekerja kepada suatu objek benda yang berada di dalam suatu aliran fluida. Pemecahan pada persoalan  aerodinamika yang umumnya melibatkan penghitungan berbagai sifat pada aliran yang terjadi, semacam kecepatan, tekanan, temperatur, maupungaya masa jenis, sebagai suatu fungsi terhadap ruang dan waktu. Dengan mempelajari model - model aliran yang ada, maka akan memungkinkan untuk menghitung maupun memperkirakan momen dan gaya bekerja pada suatu objek yang berada pada aliran tersebut. Laporan  secara eksperimen yang berguna dalam pemecahan permasalahan aerodinamika bisa didapat melalui berbagai macam metode, dan salah satu metode tersebut yaitu dengan menggunakan wind tunnel.Tujuan  memperoleh angka air volume / CMH yang dibutuhkan pengujian pada (test section) di rangkaian terbuka wind tunnel. Mengetahui total keseluruhan kerugian pada tiap bagian rangkaian terbuka wind tunnel. Mengetahui dari hasil perhitungan daya motor pada fan yang benar dan sesuai.Dari perhitungan yang telah dilakukan maka nilai minimal air volume yang diperlukan pada bagian test section sebesar 2880,14 CMH (Cubic Meter Hour). Analisa dari perhitungan Energy losses (kerugian energi) dari setiap komponen dalam rangkaian terbuka wind tunnel yaitu settling chamber ( untuk nilai Honeycomb nilai K0 = 0,004687 dan screen nilai K1 = 0,004687) , contraction dengan nilai K2 = 0,02745, test section nilai K3 = 0,0675 , Diffuser nilai K4 = 0,72962, dan saluran discharge nilai K5 = 0,1667887. Maka total dari keseluruhan nilai tersebut dijumlahkan Ktotal = 0,20014656. Perhitungan nilai daya motor yang dibutuhkan pada hasil perhitungan pada BAB 4 sebesar 233,51 W -> ½ HP.


Author(s):  
Victorita Radulescu

To improve the airfoils performances placed in supersonic flow is proposed a method of optimization for their shapes, in order to minimize the effect of the landing vortices. The theoretical modeling starts with the Navier-Stokes equations applied for thin layers, supplemented with additional conditions related to the profile shape. For a proper estimation of efficiency and responses at different flow regime’s conditions, were considered four aerodynamics airfoils, with different shapes and functioning characteristics. Two of them are special shapes of supersonic profiles and the other two deduced by theoretical assessments with an efficient behavior at high Reynolds numbers. The main purpose of this selection was to identify the essential aspects needed to be considered in numerical modeling of the airfoil’s wing shapes, as to assure an optimization of their behavior for different flow conditions. In the supersonic flow, the cross-sections of the wings are thin profiles, mainly symmetric, as to reduce the drag coefficient and to maximize, as possible, the lift coefficient. A supplementary method for the shape calculation of the aerodynamic profiles with small curvature, based on the Fredholm integral equation of the second kind, with a good behavior in the supersonic flow, is presented. Some aspects referring to unsteady flows and air compressibility are considered, as to simulate as much as possible the real, natural conditions. All profiles were tested, firstly, into a subsonic wind tunnel at incidences between 00 – 40 for different values of wind velocity, and secondly, into a supersonic wind tunnel, at the same incidences. The objective was to better understand and analyze the main factors, which influence the aerodynamic of shapes with curvature, and to assure an optimization of their behavior. The purpose of testing these profiles was to estimate a solution to improve the main characteristics, especially into the trailing and leading edges zones. There were also considered the effects of the attack angle, the influence of the wind velocity, air viscosity, and the shape’s curvature, on the vortices development. The obtained results allow a better functioning in supersonic flow regime, by eliminating the adverse pressure gradient and the boundary layer separation, assuring an optimum behavior especially into the leading edge zone.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4575
Author(s):  
Emil Ljungskog ◽  
Simone Sebben ◽  
Alexander Broniewicz

The Volvo Cars aerodynamic wind tunnel has had a vortical flow angularity pattern in the test section since its original commissioning in 1986. The vortical flow nature persisted after an upgrade in 2006, when the fan was replaced and a moving ground system was introduced. It has been hypothesized that the cause for this flow angularity pattern was leakages around the heat exchanger installed in the settling chamber. The present paper tests this hypothesis by measuring the flow angularity in the test section before and after sealing the leakages. The findings show that the leakage path around the heat exchanger does not influence the flow angularity, and that the current pattern is different compared to the commissioning after the upgrade. This prompted an investigation of the influence from the turbulence screens, which were changed after the upgrade commissioning. These investigations indicate that the probable cause of the vortical flow angularity pattern is residual swirl from the fan. Force measurements on a reference car with and without extra induced flow angularity show that the flow angles measured in the tunnel for regular operation are most likely small enough to not have a significant effect on the measured aerodynamic forces.


Author(s):  
Se-Yoon Oh ◽  
Jong-Geon Lee ◽  
Sung-Cheol Kim ◽  
Sang-Ho Kim ◽  
Seung-Ki Ahn

2012 ◽  
Vol 569 ◽  
pp. 500-503
Author(s):  
Lian Sheng Wu ◽  
Guang Li Li ◽  
Qi Fu

A practical optimal design method of supersonic nozzle is proposed for a supersonic wind tunnel’s design. Design a set of nozzle wall lines with the same nozzle length and different Mach numbers 1.5, 2.0, 2.5. Use numerical simulation method for the verify and analysis of the designed nozzle. Mainly study the impact of the installation gradient between nozzle and test section on flow field quality. This wind tunnel is the subsonic, transonic and supersonic wind tunnel and its test section cross is 0.2 m × 0.2 m .The impact on flow field quality of the test section was studied quantitatively by using the numerical simulation method. The installation gradient index was given. It has some practical value to the construction of supersonic wind tunnel. At present, this study has been applied in construction of the wind tunnel. The gradient of the test section import shall not be greater than 0.5 mm.


Sign in / Sign up

Export Citation Format

Share Document