Sand Production Prediction Analysis of Heterogeneous Reservoirs for Sand Control and Optimal Well Completion Design

Author(s):  
Giin-Fa Fuh ◽  
Nobuo Morita
2010 ◽  
Vol 50 (1) ◽  
pp. 623 ◽  
Author(s):  
Khalil Rahman ◽  
Abbas Khaksar ◽  
Toby Kayes

Mitigation of sand production is increasingly becoming an important and challenging issue in the petroleum industry. This is because the increasing demand for oil and gas resources is forcing the industry to expand its production operations in more challenging unconsolidated reservoir rocks and depleted sandstones with more complex well completion architecture. A sand production prediction study is now often an integral part of an overall field development planning study to see if and when sand production will be an issue over the life of the field. The appropriate type of sand control measures and a cost-effective sand management strategy are adopted for the field depending on timing and the severity of predicted sand production. This paper presents a geomechanical modelling approach that integrates production or flow tests history with information from drilling data, well logs and rock mechanics tests. The approach has been applied to three fields in the Australasia region, all with different geological settings. The studies resulted in recommendations for three different well completion and sand control approaches. This highlights that there is no unique solution for sand production problems, and that a robust geomechanical model is capable of finding a field-specific solution considering in-situ stresses, rock strength, well trajectory, reservoir depletion, drawdown and perforation strategy. The approach results in cost-effective decision making for appropriate well/perforation trajectory, completion type (e.g. cased hole, openhole or liner completion), drawdown control or delayed sand control installation. This type of timely decision making often turns what may be perceived as an economically marginal field development scenario into a profitable project. This paper presents three case studies to provide well engineers with guidelines to understanding the principles and overall workflow involved in sand production prediction and minimisation of sand production risk by optimising completion type.


2021 ◽  
Author(s):  
Thivyashini Thamilyanan ◽  
Hasmizah Bakar ◽  
Irzee Zawawi ◽  
Siti Aishah Mohd Hatta

Abstract During the low oil price era, the ability to deliver a small business investment yet high monetary gains was the epitome of success. A marginal field with its recent success of appraisal drilling which tested 3000bopd will add monetary value if it is commercialized as early as possible. However, given its marginal Stock Tank Oil Initially in Place (STOIIP), the plan to develop this field become a real challenge to the team to find a fit-for-purpose investment to maximize the project value. Luxuries such as sand control, artificial lift and frequent well intervention need to be considered for the most cost-effective measures throughout the life of field ‘Xion’. During field development study, several development strategies were proposed to overcome the given challenges such as uncertainty of reservoir connectivity, no gas lift supply, limited footprint to cater surface equipment and potential sand production. Oriented perforation, Insitu Gas Lift (IGL), Pressure Downhole Gauge (PDG), Critical Drawdown Pressure (CDP) monitoring is among the approaches used to manage the field challenges will be discussed in this paper. Since there are only two wells required to develop this field, a minimum intervention well is the best option to improve the project economics. This paper will discuss the method chosen to optimize the well and completion strategy cost so that it can overcome the challenges mentioned above in the most cost-effective approach. Artificial lift will utilize the shallower gas reservoirs through IGL in comparison to conventional gas lift. Sand Production monitoring will utilize the PDG by monitoring the CDP. The perforation strategy will employ the oriented perforation to reduce the sand free drawdown limit compare to the full perforation strategy. The strategy to monitor production through PDG will also reduce the number of interventions to acquire pressure data in establishing reservoir connectivity for the second phase development through secondary recovery and reservoir pressure maintenance plan. This paper will also explain the innovative approaches adopted for this early monetization and fast track project which is only completed within 4 months. This paper will give merit to petroleum engineers and well completion engineers involved in the development of marginal fields.


2021 ◽  
Author(s):  
Timur Solovyev ◽  
Nikolay Mikhaylov

Abstract The complex interbedded heterogeneous reservoirs of the Severo-Komsomolskoye field are developed by horizontal wells in which, as part of the pilot project's scope, autonomous inflow control devices (AICD) are installed to prevent early coning and gas breakthroughs in long horizontal sections and reduce sand production, which is a problem aggravated by an extremely low mechanical strength of the terrigenous deposits occurring in the Pokur formation of the Cenomanian stage in this area. The zones produced through AICDs are separated by swell packers. The issue of AICD effectiveness is discussed in the publications by Solovyev (2019), Shestov (2015), Byakov (2019) and some others. One of the methods used for monitoring horizontal sections with AICDs is production logging (PLT). However, due to the complexity of logging objectives, the use of conventional logging techniques makes the PLT unfeasible, considering the costs of preparing and carrying out the downhole operations. This paper provides some case studies of the Through-Barrier Diagnostics application, including passive spectral acoustics (spectral acoustic logging) and thermohydrodynamic modelling for the purpose of effective estimation of reservoir flows behind the liner with AICDs installed and well integrity diagnostics. As a result of the performed diagnostics, the well completion strategy was updated and optimised according to the log interpretation results, and one well intervention involving a cement squeeze with a straddle-packer assembly was carried out.


Author(s):  
Mohammad Hossein Shahsavari ◽  
Ehsan Khamehchi ◽  
Vahidoddin Fattahpour ◽  
Hamed Molladavoodi

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250466
Author(s):  
Fahd Saeed Alakbari ◽  
Mysara Eissa Mohyaldinn ◽  
Mohammed Abdalla Ayoub ◽  
Ali Samer Muhsan ◽  
Ibnelwaleed A. Hussein

Sand management is essential for enhancing the production in oil and gas reservoirs. The critical total drawdown (CTD) is used as a reliable indicator of the onset of sand production; hence, its accurate prediction is very important. There are many published CTD prediction correlations in literature. However, the accuracy of most of these models is questionable. Therefore, further improvement in CTD prediction is needed for more effective and successful sand control. This article presents a robust and accurate fuzzy logic (FL) model for predicting the CTD. Literature on 23 wells of the North Adriatic Sea was used to develop the model. The used data were split into 70% training sets and 30% testing sets. Trend analysis was conducted to verify that the developed model follows the correct physical behavior trends of the input parameters. Some statistical analyses were performed to check the model’s reliability and accuracy as compared to the published correlations. The results demonstrated that the proposed FL model substantially outperforms the current published correlations and shows higher prediction accuracy. These results were verified using the highest correlation coefficient, the lowest average absolute percent relative error (AAPRE), the lowest maximum error (max. AAPRE), the lowest standard deviation (SD), and the lowest root mean square error (RMSE). Results showed that the lowest AAPRE is 8.6%, whereas the highest correlation coefficient is 0.9947. These values of AAPRE (<10%) indicate that the FL model could predicts the CTD more accurately than other published models (>20% AAPRE). Moreover, further analysis indicated the robustness of the FL model, because it follows the trends of all physical parameters affecting the CTD.


2021 ◽  
Author(s):  
Nadiah Kamaruddin ◽  
Nurfuzaini A Karim ◽  
M Ariff Naufal Hasmin ◽  
Sunanda Magna Bela ◽  
Latief Riyanto ◽  
...  

Abstract Field A is a mature hydrocarbon-producing field located in eastern Malaysia that began producing in 1968. Comprised of multistacked reservoirs at heights ranging from 4,000 to 8,000 ft, they are predominantly unconsolidated, requiring sand exclusion from the start. Most wells in this field were completed using internal gravel packing (IGP) of the main reservoir, and particularly in shallower reservoirs. With these shallower reservoirs continuously targeted as good potential candidates, identifying a sustainable sand control solution is essential. Conventional sand control methods, namely IGP, are normally a primary choice for completion; however, this method can be costly, which requires justification during challenging economic times. To combat these challenges, a sand consolidation system using resin was selected as a primary completion method, opposed to a conventional IGP system. Chemical sand consolidation treatments provide in situ sand influx control by treating the incompetent formation around the wellbore itself. The initial plan was to perform sand consolidation followed by a screenless fracturing treatment; however, upon drilling the targeted zone and observing its proximity to a water zone, fracturing was stopped. With three of eight zones in this well requiring sand control, a pinpoint solution was delivered in stages by means of a pump through with a packer system [retrievable test treat squeeze (RTTS)] at the highest possible accuracy, thus ensuring treatment placement efficiency. The zones were also distanced from one another, requiring zonal isolation (i.e., mechanical isolation, such as bridge plugs, was not an option) as treatments were deployed. While there was a major challenge in terms of mobilization planning to complete this well during the peak of a movement control order (MCO) in Malaysia, optimal operations lead to a long-term sand control solution. Well unloading and test results upon well completion provided excellent results, highlighting good production rates with zero sand production. The groundwork processes of candidate identification down to the execution of sand consolidation and temporary isolation between zones are discussed. Technology is compared in terms of resin fluid system types. Laboratory testing on the core samples illustrates how the chemical consolidation process physically manifests. This is used to substantiate the field designs, execution plan, initial results, follow-up, lessons learned, and best practices used to maximize the life of a sand-free producer well. This success story illustrates potential opportunity in using sand consolidation as a primary method in the future.


2021 ◽  
Author(s):  
Emily Ako ◽  
Erasmus Nnanna ◽  
Odumodu Somtochukwu ◽  
Akinmade Moradeke

Abstract Chemical Sand Consolidation (SCON) has been used as a means of downhole sand control in Niger Delta since the early 70s. The countries where SCON has been used include Nigeria (Niger Delta), Gabon (Gamba) and UK (North Sea). SCON provides grain-to-grain cementation and locks formation fines in place through the process of adsorption of the sand grains and subsequent polymerization of the resin at elevated well temperatures. The polymerized resin serves to consolidate the surfaces of the sand grain while retaining permeability through the pore spaces. In a typical Niger Delta asset, over 30% of the wells may be completed with SCON. A high percentage are still producing without failure since installation from1970s. Where the original SCON jobs have failed, re-consolidation has also been carried out successfully. Chemical Sand Consolidation development has evolved over the years from: Eposand 112A and B, Eposand 212A and B, Wellfix 2000, Wellfix 3000, Sandstop (resin based), Sandtrap 225, 350 & 500 (resin based) and lately Sandtrap 225,350, 500 (solvent based) and Sandtrap ABC (aqueous based). There have been mixed results experienced with the deployment of either of the latest recipes of SCON. This was due to the fact that the conventional deployment work procedure was followed with the tendency for one-size-fits-all approach to the treatment. This paper details the challenges faced with sand production in ARAMU037, the previous interventions and how an integrated approach to the design and delivery of the most recent intervention restored the way to normal production. The well has now produced for about 2 years with minimal interruption with the activity paying out in less than 6 months. The paper also recommends the best practice for remedial sand control especially for wells in mature assets.


1997 ◽  
Author(s):  
J. Tronvoll ◽  
E. Papamichos ◽  
A. Skjaerstein ◽  
F. Sanfilippo
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document