Pushing the Limits in Offshore Mexico

2021 ◽  
Author(s):  
Hector Hugo Vizcarra Marin ◽  
Alex Ngan ◽  
Roberto Pineda ◽  
Juan Carlos Gomez ◽  
Jose Antonio Becerra

Abstract Given the increased demands on the production of hydrocarbons and cost-effectiveness for the Operator's development wells, the industry is challenged to continually explore new technology and methodology to improve drilling performance and operational efficiency. In this paper, two recent case histories showcase the technology, drilling engineering, and real-time optimization that resulted in record drilling times. The wells are located on shallow water in the Gulf of Mexico, with numerous drilling challenges, which typically resulted in significant Non-Productive Time (NPT). Through close collaboration with the Operator, early planning with a clear understanding of offset wells challenges, well plan that minimize drilling in the Upper Cretaceous "Brecha" Formation were formulated. The well plan was also designed to reduce the risk of stuck pipe while meeting the requirements to penetrate the geological targets laterally to increase the area of contact in the reservoir section. This project encapsulates the successful application of the latest Push-the-Bit Rotary Steerable System (RSS) with borehole enlargement technology through a proven drilling engineering process to optimize the drilling bottomhole assembly, bit selection, drilling parameters, and real-time monitoring & optimization The records drilling times in the two case histories can be replicated and further improved. A list of lessons learned and recommendations for the future wells are discussed. These include the well trajectory planning, directional drilling BHA optimization, directional control plan, drilling parameters to optimize hole cleaning, and downhole shocks & vibrations management during drilling and underreaming operation to increase the drilling performance ultimately. Also, it includes a proposed drilling blueprint to continually push the limit of incremental drilling performance through the use of RSS with hydraulics drilling reamers through the Jurassic-age formations in shallow waters, Gulf of Mexico.

2021 ◽  
Author(s):  
Saif Al Arfi ◽  
Fatima AlSowaidi ◽  
Fernando Ruiz ◽  
Ibrahim Hamdy ◽  
Yousef Tobji ◽  
...  

Abstract To meet the current oil and gas market challenges, there is an industry need to optimize cost by safely drilling longer horizontal wells to maximize well productivity. Drilling challenges include the highly deviated trajectory that starts from the surface sections and wellhead, the high DogLeg Sevirity (DLS) profile with collision risks, and the thin complex geological structures, especially in new unconventional fields where numerous geological and geomechanical uncertainties are present. To mitigate for those challenges, reviewing the existing drilling techniques and technologies is necessary. To compete in the current Hi-Tech and Automation era, the main challenges for directional drilling service providers are to reduce well time, place wells accurately, and improve reliability, reducing repair and maintenance costs and helping the customer reduce time and costs for the overall project. Offset wells analysis and risk assessments allowed identifying the main challenges and problems during directional drilling phases, which were highlighted and summarized. As a proposed solution, the new generation of intelligent fully rotating high dogleg push-the-bit rotary steerable system has been implemented in the UAE onshore oil and gas fields to improve the directional drilling control and the performance. This implementation reduced the Non-Productive time (NPT) related to the human errors as the fully automation capabilities were being utilized. The new rotary steerable system has the highest mechanical specs in the market including self-diagnosis and self-prognosis through digital electronics and sophisticated algorithms that monitor equipment health in real-time and allow for managing the tool remotely. As a result, the new intelligent RSS was implemented in all possible complex wellbore conditions, such as wells with high DLS profile, drilling vertical, curve, and lateral sections in a single trip with high mud weight and high solid contents. Automation cruise control gave the opportunity to eliminate any well profile issues and maintain the aggressive drilling parameters. Using the Precise Near-bit Inclination and Azimuth and the At-Bit Gamma real-time data and high-frequency tool face measurements in the landing intervals where required for precise positional control to enable entering the reservoir in the correct location and with the correct attitude helping the customer's Geology and Geophysics department to place wells accurately while maintaining a high on bottom ROP.


2021 ◽  
Vol 143 (5) ◽  
Author(s):  
Rahman Ashena ◽  
Minou Rabiei ◽  
Vamegh Rasouli ◽  
Amir H. Mohammadi ◽  
Siamak Mishani

Abstract Proper selection of the drilling parameters and dynamic behavior is a critical factor in improving drilling performance and efficiency. Therefore, the development of an efficient artificial intelligence (AI) method to predict the appropriate control parameters is critical for drilling optimization. The AI approach presented in this paper uses the power of optimized artificial neural networks (ANNs) to model the behavior of the non-linear, multi-input/output drilling system. The optimization of the model was achieved by optimizing the controllers (combined genetic algorithm (GA) and pattern search (PS)) to reach the global optima, which also provides the drilling planning team with a quantified recommendation on the appropriate optimal drilling parameters. The optimized ANN model used drilling parameters data recorded real-time from drilling practices in different lithological units. Representative portions of the data sets were utilized in training, testing, and validation of the model. The results of the analysis have demonstrated the AI method to be a promising approach for simulation and prediction of the behavior of the complex multi-parameter drilling system. This method is a powerful alternative to traditional analytic or real-time manipulation of the drilling parameters for mitigation of drill string vibrations and invisible lost time (ILT). The utilization can be extended to the field of drilling control and optimization, which can lead to a great contribution of 73% in reduction of the drilling time.


2015 ◽  
Vol 49 (3) ◽  
pp. 64-71 ◽  
Author(s):  
Patrick J. Fitzpatrick ◽  
Yee Lau ◽  
Robert Moorhead ◽  
Adam Skarke ◽  
Daniel Merritt ◽  
...  

AbstractSustained observations of oceanographic and atmospheric boundary layer conditions are imperative for the investigation of tropical cyclone genesis, for numerical model input to predict track and intensity, and in general, for many environmental monitoring needs. We present preliminary results of a Fall 2014 100-day deployment of Wave Glider platforms in the eastern Gulf of Mexico designed to dynamically collect surface weather, water temperature, wave, and ocean current profile data within tropical cyclones. Data were collected and retransmitted near real time through a Liquid Robotics interface to regional and national data portals such as the National Data Buoy Center, and secondarily also used by the private sector. Accomplishments include buoy loitering for validation exercises, data gap filling, platform redeployments, and an interception of the fringes of Tropical Storm Hanna. Preliminary buoy loitering assessments using bias and absolute error metrics showed reasonable agreement with buoys for atmospheric pressure, wave, and height-adjusted wind data but that the temperature hardware requires an improved sensor. A full assessment of the potential for the sustained collection and real-time dissemination of environmental data for Wave Glider platforms is presented including lessons learned.


2013 ◽  
Vol 47 (1) ◽  
pp. 118-133 ◽  
Author(s):  
Ann E. Jochens ◽  
Stephanie M. Watson

Abstract The Gulf of Mexico is one of the most important ecologic and economic resources in the United States. To help protect this resource and to support a wide range of decision-making, the Gulf of Mexico Ocean Observing System (GCOOS) is being built to be a sustained network that provides integrated coastal and ocean data from a diverse array of data sources in real time, near real time, and historically. GCOOS is 1 of the 11 regional components of the U.S. Integrated Ocean Observing System (U.S. IOOS). Because of the very limited resources available to date, the GCOOS Regional Association (GCOOS-RA), which is working to build the GCOOS, has not deployed any of its own observing systems. That, coupled with strong volunteer participation, has led the GCOOS-RA to focus its efforts on integrating existing federal and non-federal (regional, state, local, academic, and private) assets and data. The GCOOS-RA is working to adapt and expand the GCOOS to address data gaps identified by stakeholders and to apply the lessons learned from events such as the Deepwater Horizon (DWH) oil spill, harmful algal blooms (HABs), Gulf hurricanes, and hypoxia. The contributions of GCOOS demonstrate the value of a sustained U.S. IOOS and provide specific lessons necessary for the successful build-out of the system in the Gulf of Mexico. However, the lessons also demonstrate the importance of applying additional resources to improve GCOOS’ ability to meet stakeholder needs such as in response to environmental events. A full, comprehensive GCOOS, exclusive of federal assets, is estimated to cost roughly $22 M for capital and $20-25 M/year for operation and maintenance (O&M) in the near term with approximately an additional $25 M in capital to complete the build-out and $35-50 M/year in O&M costs to maintain the system—an excellent value when compared to the billions of dollars of economic impact of four major industries in the Gulf of Mexico: oil and gas, tourism and recreation, fishing, and shipping.


2021 ◽  
Author(s):  
Pedro J. Arévalo ◽  
Olof Hummes ◽  
Matthew Forshaw

Abstract Real-time while drilling simulations use an evergreen digital twin of the well, consisting of physics-based models in an earth model to constantly update boundary conditions and parameters while drilling. The approach actively contributes to prediction or early detection of specific drilling issues, thus reducing drilling-related risk, non-productive time (NPT), and invisible-lost time (ILT). The method also unlocks further drilling optimization opportunities, while staying within a safe operative envelope that protects the wellbore. In the planning phase, a run plan is prepared based on drilling engineering simulations – such as downhole hydraulics and Torque and Drag (T&D) – within the lithology and geomechanics of the earth model. While drilling, the run plan continuously evolves as automatic updates with actual drilling parameters refine the simulations. Smart triggering algorithms constantly monitor sensor data at surface and downhole, automatically updating the simulations. Drilling automation services consume the simulation results, shared across an aggregation layer, to predict drilling dysfunctions related to hole-cleaning, downhole pressure, tripping velocity (which might lead to fractured formations or formation fluids entering the wellbore), tight hole and pipe sticking. Drillers receive actionable information, and drilling automation applications are equipped to control specific drilling processes. Case studies from drilling runs in the North Sea and in Middle East confirm the effectiveness of the approach. Deployment on these runs used a modular and scalable system architecture to allow seamless integration of all components (surface data acquisition, drilling engineering simulations, and monitoring applications). As designed, the system allows the integration of new services, and different data providers and consumers.


OCEANS 2009 ◽  
2009 ◽  
Author(s):  
Nan Walker ◽  
Robert Leben ◽  
Steven Anderson ◽  
Alaric Haag ◽  
Chet Pilley ◽  
...  

Healthcare ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 915
Author(s):  
Irena Duś-Ilnicka ◽  
Aleksander Szymczak ◽  
Małgorzata Małodobra-Mazur ◽  
Miron Tokarski

Since the 2019 novel coronavirus outbreak began in Wuhan, China, diagnostic methods in the field of molecular biology have been developing faster than ever under the vigilant eye of world’s research community. Unfortunately, the medical community was not prepared for testing such large volumes or ranges of biological materials, whether blood samples for antibody immunological testing, or salivary/swab samples for real-time PCR. For this reason, many medical diagnostic laboratories have made the switch to working in the field of molecular biology, and research undertaken to speed up the flow of samples through laboratory. The aim of this narrative review is to evaluate the current literature on laboratory techniques for the diagnosis of SARS-CoV-2 infection available on pubmed.gov, Google Scholar, and according to the writers’ knowledge and experience of the laboratory medicine. It assesses the available information in the field of molecular biology by comparing real-time PCR, LAMP technique, RNA sequencing, and immunological diagnostics, and examines the newest techniques along with their limitations for use in SARS-CoV-2 diagnostics.


Sign in / Sign up

Export Citation Format

Share Document